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Abstracts 

Functionally Graded Materials is a composite class in which the volume fractions of 

constituted components are changed gradually leading to the smooth variation of 

material properties in specific directions. This material class has been applied widely in 

various fields of engineering such as aerospace, marine, automotive, civil and medical 

industries thanks to the striking features of high ability in thermal resistance and 

mechanical ductility. The widespread applications of this material class results in the 

development of different theories and numerical methods to analyse properly the static, 

vibration and buckling behaviours. In this thesis proposes a novel general higher-order 

shear deformation beam theory for analysis of isotropic and functionally graded 

sandwich beams under hygro-thermal-mechanical loads. A general theoretical 

formulation is derived from the fundamental of two-dimensional elasticity theory and 

then novel higher-order shear deformation beam theories are obtained. Analysis of 

functionally graded beam with effects of moisture and temperature rises is studied. The 

temperature and moisture are supposed to be varied uniformly, linearly and non-linearly. 

In addition, the effects of scale-size of functionally graded beams is proposed. The 

governing equations of motion are obtained using the variational principle. Analytical 

and numerical methods, including new Ritz methods and finite element methods were 

applied to achieve the static, free vibration and buckling behaviours of functionally 

graded beam. The present results were validated by comparing to the literature and the 

conclusions about the proposed models are deduced. The effects of the material 

parameters and homogenization schemes, the aspect and the slenderness ratios, boundary 

conditions and the sandwich schemes on the bending deflection, stress, natural frequency 

and buckling loads were investigated. This thesis can be a theoretical guidance in 

developing the applications of functionally graded beam and functionally graded 

sandwich beams in some engineering industries. 
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Chapter 1 

General Introduction 
 

 

 

This chapter is to present a general introduction of composite structures, research context of objective 

the thesis. 

The highlight of this chapter is followed: 

- Applications of composite materials in the engineering fields  

- A literature review of composite beam theories. 

- A literature review of analytical and numerical methods 

- A literature review of behaviors of hygro-thermal-mechanical loads 

- Objective and novelty of the thesis. 

- Thesis outline 
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1.1  Introduction and Objectives 

The most well-known advantages of high stiffness-to-weight and strength-to-weight 

ratios, composite materials have been commonly used in many engineering fields such 

as aerospace (Figure 1.1), mechanical engineering, construction, etc. Composite 

structures can be categorized into two main types: Laminated composite structures and 

functionally graded ones. Laminated composite structures are ones made of laminae 

bonded together at the interfaces of layer in which their fibre orientations can be changed 

to meet structural performances. The disadvantage of these structures is material 

discontinuity at the interfaces of layer, that can lead to the stress concentration and 

delamination effects. To overcome this adverse, the functionally graded structures have 

been developed in which the properties of constituent materials vary continuously in a 

required direction and there thus is no interfacial effect.  

Potential applications of the composite materials in the engineering fields led to the 

development of composite structure theory. The composite beams are one of the most 

important structural components of the engineering structures which attracted many 

researches with different theories, numerical and analytical approaches, only some 

representative references are herein cited. 

For composite beam models, a literature review on the composite beam theories can be 

seen in the previous works of Ghugal and Shimpi [1], Sayyad and Ghugal [2]. Many 

beam theories have been developed in which it can be divided into three main categories: 

classical theory, first-order shear deformation theory, higher-order shear deformation 

theory. The classical theory neglects transverse shear strain effects and therefore it is 

only suitable for thin structures. In order to overcome this problem, the first-order shear 

deformation theory accounts for the transverse shear strain effect, however it requires a 

shear correction factor to correct inadequate distributions of the transverse shear stresses 

through its thickness [3, 4]. The higher-order shear deformation theory predicts more 

accurate than the other theories due to their appropriate distribution of transverse shear 
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stresses. However, the accuracy of this theory depends on the choice of higher-order 

shape functions [5, 6]. In addition, several other authors proposed higher-order shear 

deformation models and techniques to reduce number of field variables. This approach 

led to refined higher-order shear deformation theories which are a priori efficient and 

simple [7-9]. It can be seen that the development of simple and efficient composite beam 

models is a significant topic interested by many researchers. 

 

Figure 1.1 Application of composite materials in engineering 

https://tantracomposite.com/ 

 Moreover, when the behaviors of beam are considered at a small scale, the experimental 

studies showed that the size effect is significant to be accounted, that led to the 

development of Eringen’s nonlocal elasticity theory [10] to account for scale effect in 

elasticity, was used to study lattice dispersion of elastic waves, wave propagation in 

composites, dislocation mechanics, fracture mechanics and surface tension fluids. After 

https://tantracomposite.com/
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this, Peddieson et al. [11] first applied the nonlocal continuum theory to the 

nanotechnology in which the static deformations of beam structures were obtained by 

using a simplified nonlocal beam model based on the nonlocal elasticity theory of 

Eringen [10] and the modified couple stress theory (MCST), which was developed by 

Yang et al. [12] by modifying the classical couples stress theory [13-16], is advantageous 

since it requires only one additional material length scale parameter together with two 

from the classical continua. This feature was presented by the theoretical framework in 

[12] which proved that the antisymmetric part of curvature does not appear explicitly in 

the strain energy. Based on this approach, several studies have been investigated and 

applied for analysis of composite micro beams and nano beams [17-19]. Due to the 

difficulty in introducing the constitutive equations of micro beams into the energy 

functional, it is observed from the literature on micro beams that the effect of boundary 

conditions on the behaviors of micro beams are still limited. 

For computational methods, many computational methods have been developed in order 

to predict accurately responses of composite structures with analytical and numerical 

approaches. For analytical approaches, Navier procedure can be seen as the simplest one 

in which the displacement variables are approximated under trigonometric shape 

functions that satisfy the boundary conditions (BCs). Although this method is only 

suitable for simply supported BCs, it has widespread used by many authors by its 

simplicity [20, 21]. Alternatively, the Ritz method is the most general one which 

accounts for various BCs. However, the accuracy of this approach requires an accurate 

choice of the approximate shape functions. The shape functions can be satisfied the BCs, 

conversely a penalty method can be used to incorporate the BCs. Several previous works 

developed the Ritz-type solution method with trigonometric, exponential and 

polynomial shape functions for analysis of composite beams [22-24]. Other analytical 

approaches have been investigated for analysis of composite beams and plates such as 

differential quadrature method (DQM) by Bellman and Casti [25] that applied 
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successfully for solving nonlinear differential equations system and for behavior analysis 

of composite beams [26, 27]. Moreover, due to the limitation of analytical method in 

practical applications, especially for complex geometries, numerical methods have been 

developed with various degrees of success in which the finite element method (FEM) is 

the most popular one which attracted a number of researches for behavior analysis of 

composite beams [7, 28, 29]. In practice, the FEM has difficulties to conveniently 

construct conformable plate elements of high-order as required for thin beam and plates, 

and to overcome the stiffness excess phenomena characterizing the shear-locking 

problem. Other numerical approaches can be considered for analysis of composite beams 

such as meshless method [30, 31], isogeometric finite element method [32, 33]. This 

literature survey indicates that a simple and efficient computational method for behavior 

analysis of composite beams is also an interesting topic. 

In Vietnam, the behavior analysis of composite structures has attracted a number of 

researches, only some representative research groups are cited. Research group of 

Nguyen et al. [34-36] at the Hutech University. Nguyen et al. [37-39] at the Ton Duc 

Thang University. These groups of computational mechanic’s focus on the development 

of advanced numerical methods such as the FEM, S-FEM, meshless method, 

isogeometry method and optimization theory of structures. Nguyen et al. [40-43] 

developed analytical methods for analysis of composite plates and shells with various 

geometric shapes and loading conditions. Tran et al. [44, 45] carried out some 

experimental studies on composite structures. Hoang et al. [46, 47] studied responses of 

functionally graded plates and shells under thermo-mechanical loads. Nguyen et al. [48, 

49] investigated behaviors of functionally graded beams by the FEM under some 

different geometric and loading conditions. Group of GACES at HCMC University of 

Technology and Education developed analytical and numerical methods for analysis of 

composite beams, plates and shells, beam and plate models under hygro-thermo-

mechanical loads [50-52]. 

https://scholar.google.com.vn/citations?user=FLpKLI0AAAAJ&hl=vi&oi=sra
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A literature review on the behaviors of composite beams showed that the following 

points are necessary to be developed “ANALYSIS OF FUNCTIONALLY GRADED 

SANDWICH BEAMS UNDER HYGRO – THERMO – MECHANICAL LOADS”. 

- Develop novel general higher-order shear deformation model for analysis of 

functionally graded isotropic and sandwich beams  

- Develop a functionally graded micro beam and nano beam model with various 

boundary conditions 

- Develop a novel hybrid shape function for studying FG beams with different boundary 

conditions 

- Develop finite element solution for analysis of functionally graded beams with 

different boundary conditions 

1.2  Objective and novelty of the thesis 

The object of this thesis is to propose some beam models for static, buckling and 

vibration analysis of functionally graded isotropic and sandwich beams embedded in 

hygro-thermo-mechanical environments. 

The outline of this objective is followed: 

- Novel general higher-order shear deformation beam theories are developed for 

analysis of functionally graded isotropic and sandwich beams. It is derived from the 

fundamental of elasticity theory.  

- Develop a functionally graded microbeam and nanobeam model with various 

boundary conditions 

- Develop a novel hybrid shape function for studying FG beams with different boundary 

conditions 

- Develop finite element solution for analysis of functionally graded beams with 

different boundary conditions 
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1.3  Thesis outline 

This thesis contains 7 chapters to describe the whole procedure of development and 

investigation, which is structured as follows: 

 Chapter 1: The objective of this chapter is to introduce a brief literature review on 

computational theories and methods of composite beams, from which several novel 

findings are found and proposed. 

 Chapter 2: It presents more details of the composite materials, its microstructure and 

method of estimating the effective elastic properties. A literature review also focuses 

on the topics that are relevant to this research such as beam theories, analytical and 

numerical approaches for bending, buckling and vibration analysis of beams in hygro-

thermo-mechanical environment. 

 Chapter 3: This chapter proposes a novel general higher-order shear deformation 

beam theory for analysis of functionally graded beams. A general theoretical 

formulation of higher-order shear deformation beam theory is derived from the 

fundamental of two-dimensional elasticity theory and then novel different higher-

order shear deformation beam theories are obtained. Moreover, two other beam 

models are also proposed. A HSBT model with a new inverse hyperbolic-sine higher-

order shear function and a novel three-variable quasi-3D shear deformation beam 

theory for analysis of functionally graded beams are proposed. Numerical results are 

carried out to verify the accuracy of the proposed theories and to investigated effects 

of material distribution, thickness ratio of layer, span-to-thickness ratio and boundary 

conditions on deflection and stresses, critical buckling loads and natural frequencies. 

 Chapter 4: This chapter investigates effects of moisture and temperature rises on 

vibration and buckling responses of functionally graded beams. The present work is 

based on a higher-order shear deformation theory which accounts for a hyperbolic 

distribution of both in-plane and out-of-plane displacements. The temperature and 

moisture are supposed to be varied uniformly, linearly and non-linearly. 
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 Chapter 5: This chapter proposes the effects of scale-size on the buckling and 

vibration behaviors of functionally graded beams in thermal environments. A general 

theoretical formulation is derived from the fundamental of two-dimensional elasticity 

theory. The effects of boundary conditions on behaviors of functionally graded beam 

are considered. 

 Chapter 6: A finite element model for vibration and buckling of functionally graded 

beams based on a refined shear deformation theory is presented. Governing equations 

of motion and boundary conditions are derived from the Hamilton’s principle. Effects 

of the power-law index, the span-to-height ratio and the various boundary conditions 

on the natural frequencies, critical buckling loads of functionally graded beams are 

discussed.  

 Chapter 7: This chapter presents a summary of the investigation and the important 

conclusions of this research are presented. The further work related to this research is 

suggested for future development and investigation. 

1.4  List of publications 

 Articles in ISI-covered journal 

1. Trung-Kien Nguyen, Ba-Duy Nguyen. A new higher-order shear deformation theory 

for static, buckling and free vibration analysis of functionally graded sandwich 

beams. Journal of Sandwich Structures and Materials, pages 613-631, November 

2015. 

2. Nguyen T-K, Vo T.P, Nguyen B-D, Lee J. An analytical solution for buckling and 

vibration analysis of functionally graded sandwich beams using a quasi-3D shear 

deformation theory. Composite Structures, Vol. 156, pages 238-252, November 2016.   

3. Trung-Kien Nguyen, Ba-Duy Nguyen, Vo T.P, Huu-Tai Thai. Hygro-thermal effects 

on vibration and thermal buckling behaviours of functionally graded beams. 

Composite Structures, Vol. 176, pages 1050-1060, September 2017. 

 Articles in national scientific journal 

http://www.sciencedirect.com/science/article/pii/S0263822317312746


11 

 

1. Nguyen Ba Duy, Nguyen Trung Kien. Free vibration analysis of functionally graded 

sandwich beams based on a higher-order shear deformation theory. Journal of 

Science and Technology 52 (2C), pages 240-249, 2014. 

 National Conference 

1. Nguyen Ba Duy, Nguyen Trung Kien. Analysis of free vibration of sandwich beams 

with functionally graded faces and homogeneous core. Proceedings of the 11th 

National Conference on Solid Mechanics, Ho Chi Minh City, Viet Nam, pp. 392 – 

400, 2013. 

2. Nguyen Ba Duy, Nguyen Trung Kien. Vibration and buckling analysis of sandwich 

beams with functionally graded faces and homogeneous core. Proceedings of the 

National Conference on Mechanical Engineering, Da Nang City, Viet Nam, pp. 178-

188, 2015. 

3. Nguyen Ba Duy, Nguyen Trung Kien. Thermo-mechanical behavior of functionally 

graded sandwich beams using a higher-order shear deformation theory. Proceedings 

of the 12th National Conference on Solid Mechanics, Da Nang City, Viet Nam, pp. 

825-832, 2015. 

4. Nguyen Ba Duy, Nguyen Trung Kien, Mai Duc Dai. Vibration analysis of 

functionally graded nano beams with various boundary conditions. Proceedings of 

the 10th National Conference on Mechanical Engineering, Ha Noi City, Viet Nam, pp. 

459-467, 2018. 
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Chapter 2 

Literature review on behaviors of 

functionally graded beams in hygro-thermo-

mechanical environments 
 

 

This chapter is to present a literature review on computational theories and methods for bending, 

buckling, and vibration analysis of FG sandwich beams under mechanical, thermal and moisture loads.  

The highlight of this chapter is followed: 

- A brief introduction about composite material and functionally graded materials as well as their 

applications. 

- Various techniques used to determine the effective elastic properties of functionally graded 

materials. 

- Functionally graded beams in thermal and moisture environments. 

- Different beam theories for analysis of isotropic and functionally graded sandwich beams and novel 

shear function for higher-order shear deformation beam theory. 

- Analytical and numerical approaches on the behavior analysis of isotropic and FG sandwich beams.  

- Concluding remarks on literature review and novel findings of future works. 
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2.1  Composite and functionally graded materials 

Composite materials: Composite materials are engineering materials which consist of 

two or more material phases whose hygro-thermo-mechanical performance and 

properties are designed to be superior to those of the constituents. One of the phases 

being usually discontinuous, stiffer, and stronger, is namely reinforcement whereas the 

softer and weaker phase being continuous is namely matrix. The matrix material 

surrounds and supports the reinforcement materials by maintaining their relative 

positions. The reinforcements impart their special mechanical and physical properties to 

improve the matrix properties. Moreover, an additional material can practically be added 

to reinforcement-matrix composite in order to enhance chemical interactions or other 

processing effects. 

  

a) b) 

Figure 2.1 Particulate and fiber composite materials 

https://www.researchgate.net/figure/Different-types-of-composite-

materials_fig2_313880039 

Composite materials are classified into two main categories depending on the type, 

geometry, orientation and arrangement of the reinforcement phase: Particulate 

composites and fiber composites (Figure 2.1). Particulate composites compose of 

particles of various sizes and shapes randomly dispersed within the matrix, which can be 

therefore regarded as quasi homogeneous on a scale larger than the particle size. Fiber 

composites are composed of fibers as the reinforcing phase whose form is either 

discontinuous (short fibers or whiskers) or continuous (long fibers). Fibers arrangement 
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and their orientation can be customized for required performances. Recently, the new 

generation of composite materials was made by the carbon nanotubes (CNTs) 

composites added into the polymer matrix to fabricate polymer matrix nanocomposites 

and it will be the potential application of fiber composite materials. In practice, the CNTs 

are tiny tubes with diameters of a few nanometers and lengths of several microns made 

of carbon atoms. The CNTs have been used in various fields of applications in last 

decade due to their high physical, chemical and mechanical properties. The development 

of composite materials with different processing methods led to the birth of multilayered 

structures which compose of thin layers of different materials bonded together (Figure 

2.2a). However practically, the main disadvantages of such an assembly is to create a 

material discontinuity through the interfaces of layers along which stress concentrations 

may be high, more specifically when high temperatures are involved. It can result in 

damages, cracks and failures of the structure. One way to overcome this adverse is to use 

functionally graded materials within which material properties vary continuously. The 

concept of functionally graded material (FGM) was proposed in 1984 by the material 

scientists in the Sendai area of Japan [53]. 

 
(a) Laminated composite 

 
(b) FGM 

Figure 2.2 Laminated composite and functionally graded materials 

 Functionally graded materials: FGMs are advanced composite materials whose 

properties vary smoothly and continuously in a required direction (Figure 2.2b). This 

new material overcomes material discontinuity found in laminated composite materials 

and therefore presents a large potential application. The earliest FGMs were introduced 

by Japanese scientists as ultra-high temperature resistant materials for aerospace 

applications and then spread in electrical devices, energy transformation, biomedical 

engineering, optics, etc.([54, 55]). FGMs are actually applied to many engineering fields 
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such as cutting tools, machine parts, and engine components, incompatible functions 

such as heat, moisture, wear, and corrosion resistance plus toughness, etc. (Figure 2.3). 

 

Figure 2.3 Potentially applicable fields for FGMs [55]. 

The earliest purpose of FGM development is to produce extreme temperature resistant 

materials so that ceramics are used as refractories and mix with other materials. In 

practice, the ceramics cannot be themselves used to make engineering structures 

subjected to high amounts of mechanical loads. It is due to its poor property in toughness. 

In the other cases, the metals and polymers are good at toughness and therefore used to 

mix with ceramics in order to combine the advantages of each material. 

An example of FGMs used for a re-entry vehicle is shown in Figure 2.4. The FGMs can 

be used to produce the shuttle structures. The heat source is created by the air friction of 

high velocity movement. If the structures of the vehicle are made from FGMs, the hot 

air flow is blocked by the outside surface of ceramics and transfers slightly into the lower 

surface. Consequently, the temperature at the lower surface is much reduced, which 

therefore prevents or minimizes structural damage due to thermal stresses and thermal 

shock. 
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Figure 2.4 An example of FGM application for aerospace 

engineering [56]. 

 

Figure 2.5 A discrete and continuous model of FG material [57]. 

2.2  Homogenized elastic properties of functionally graded beams 

A FGM is formed by varying the microstructure from one material to another material 

with a specific gradient. Although the FGM is heterogeneous at microscopic scale, it 

varies continuously at macroscopic one (Figure 2.5). In order to estimate effective elastic 
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properties of the FGM,  analytical homogenization approaches can be used to simplify 

computations of heterogeneous complex microstructures (a brief literature review on 

homogenization of heterogeneous composite materials can be seen in [58]. The purpose 

of this section is thus to review some simple approximations which are commonly used 

to estimate the homogenized elastic properties of the FGMs, especially for the FG beams. 

 

(a) Type A: A single layer functionally graded beam 

 
(b) Type B: FG sandwich beam with FG face sheets and isotropic core. 

 

(c) Type C: FG sandwich beam with isotropic face sheets and FG core. 

 

 

(d) Type D: FG sandwich beam with 2D FG . 

Figure 2.6 Geometry and coordinate systems of FG sandwich beams. 
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The variation of material properties of the FGM can be expressed in term of the volume 

fraction of constituent materials under following forms: the power-law function, the 

exponential-law function and the sigmoid function [54]. In order to detail these material 

distributions, FG beams with length L  and section b×h are considered. It is composed 

of ceramic and metal materials whose properties vary continuously through the beam 

thickness. Four types of FG beams are investigated: FG beam (Type A), FG sandwich 

beam with FG faces and homogeneous core (Type B), FG sandwich beam with FG core 

and homogeneous beam (Type C), and bi-directional FG beam (Type D) (Figure 2.6). 

2.2.1  Power function 

The rule of mixtures is the simplest technique widely used by many researchers for 

material gradation. In this rule, the effective property of FGM can be approximated based 

on an assumption that a composite property is the volume weighted average of the 

properties of the constituents. The power-law for the material gradation was first 

introduced by Wakashima et al. [59]. Furthermore, this law is widely used by many 

researchers for the modeling and analysis of FG sandwich beams. The law follows linear 

rule of mixture and properties are varying across the dimensions of FG beam. 

The power-law for FG beam graded across the thickness [60]: 

 ( ) ( ) ( )c m mP z P P V z P    (2.1) 

where Pc and Pm are Young’s modulus (E), Poisson’s ratio ( ), mass density (  ), 

coefficient of thermal expansion ( ), coefficient of moisture expansion ( ), thermal 

conductivity coefficient (k) of ceramic and metal materials, respectively.  

 Type A: The volume fraction function  V z  for single layer FG beam 
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where p is the power-law index 

 Type B: The volume fraction function  V z for sandwich beam with FG face sheets  
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 Type C: The volume fraction function  V z  for sandwich beam with FG core 
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Figure 2.7 The volume fraction function  V z  for the power-law (Type B). 

2.2.2  Exponential function 

The exponential law is more common in fracture studies of FGM beams and plates (E-

FGM). It is given by Delate and Erdogan [61]. The distribution of properties of single 
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layer FG beams or plates across the thickness according to the exponential law is as 

follows: 
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This form of distribution is also mentioned in the research of Mantari et al [62] (Figure 

2.8). 
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         V z  

Figure 2.8 The volume fraction function  V z for the exponential-law 

The exponential material distribution for bi-directional FG beams or plates across the 

thickness is given by: 
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where px and pz are the gradient indexes which determine the material properties through 

the thickness (h) and length of the beam (L), respectively. When the px and pz are set to 

zero then the beam becomes homogeneous. 

2.2.3  Sigmoid function 

To reduce the abrupt variation of FG materials near the upper and lower surfaces of the 

beam, the material distribution using two power-law functions can be used [63], namely 

sigmoid function whose material volume fraction is given by the following form: 
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Figure 2.9 The volume fraction function  V z  for the Sigmoid -law 

2.3   Hygral and thermal variations in FG beams 

It is known that the rises of temperature and moisture influence to behaviors of the FG 

beams. In order to investigate these effects, many earlier works have been realized as 
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mentioned in Section 2.1 in which it can be distinguished into three following different 

case: uniform moisture and temperature rise, linear moisture and temperature rise, 

nonlinear moisture and temperature rise. 

2.3.1  Uniform moisture and temperature rise  

In this case, the temperature and moisture are supposed to vary uniformly in the beam 

and increased from a reference T0 and C0, thus their current values of temperature and 

moisture are respectively followed [64]. 

 0
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T T T
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  (2.12) 

where T0 and C0 are reference temperature and moisture, respectively, which are 

supposed to be at the bottom surface of the beam. 

2.3.2  Linear moisture and temperature rise 

In this case, The temperature and moisture are linearly increased as follows [65]. 
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where Tt and Tb are temperatures as well as Ct and Cb are moisture content at the top and 

bottom surfaces of the beam. 

2.3.3  Nonlinear moisture and temperature rise 

The temperature and moisture in this case are varied nonlinearly according to a 

sinusoidal law [66] as follows. 
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In addition, the temperature distribution obtained from Fourier equation of steady-state 

one-dimensional heat conduction is also considered: 
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  (2.15) 

2.4  Theories for behavior analysis of FG beams 

The kinematics of FG beams can be represented by using the classical beam theory 

(CBT), the first shear deformation theory (FSDT), and higher-order shear deformation 

beam theories (HSDTs). It is known that the CBT neglects the effect of the transverse 

shear deformation, therefore it is only suitable for thin beams. The FSDT considers the 

effect of transverse shear deformation, it therefore predicts responses of the beam more 

accurate than the CBT, however practically it requires a shear correction factor to correct 

inadequate distribution of the transverse shear stress. To overcome this adverse, HSBT 

with a higher-order variation of axial displacement or both axial and transverse 

displacements requires no shear correction coefficient and predicts more accurate than 

the FSBT. Moreover, the recent researches indicate that when the behaviors of beams 

are considered at a small scale, the experimental studies showed that the size effect is 

significant to be accounted, that led to the development of Eringen’s nonlocal elasticity 

theory, strain gradient theory, modified couple stress with different degrees of success. 

The following sections briefly summarize the theories for behavior analysis of FG 

beams. 

2.4.1  Classical beam theory (CBT) 

The CBT is developed by Euler–Bernoulli [67]. It is also referred to as Euler–Bernoulli 

beam theory. The CBT is the simplest beam theory and assumes that the plane sections 

which are perpendicular to the neutral layer before bending remain plane and 

perpendicular to the neutral layer after bending. Both transverse shear and transverse 

normal strains are neglected by using these assumptions.  
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The displacement field of the CBT can be written as: 
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  (2.16) 

where u0 and w0 are the displacement of any point of the beam in x and z-directions, t is 

the time, respectively.  

 

Figure 2.10 Kinematics of the Euler–Bernoulli beam 

2.4.2  First-order shear deformation theory (FSDT) 

The FSDT, commonly known as Timoshenko beam theory, predicts constant transverse 

shear stress through the thickness of beam. The FSDT assumes that the plane sections 

which are perpendicular to the neutral layer before bending remain plane but not 

necessarily perpendicular to the neutral layer after bending. The FSDT requires the shear 

correction factor to properly account for the effect of transverse shear deformation. 

The displacement fields of Timoshenko’s beam theory can be written as 
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  (2.17) 

where the comma indicates partial differentiation with respect to the coordinate subscript 

that follows; 0u and   are the axial displacement and rotation, and 0w  is the transverse 

displacement, respectively.  
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Figure 2.11 Kinematics of the Timoshenko beam 

2.4.3  Higher-order shear deformation beam theories 

The mentioned limitations of the CBT and FSDT led the development of HSDTs. The 

HSDTs use polynomial or non-polynomial shape functions to account the effect of 

higher-order transverse shear deformation and to get the quasi-realistic variation of 

transverse shear stress across the thickness of the beam. In practice, many theories have 

been developed with different higher-order shape functions in which the kinematics are 

based on higher-order variations of axial displacement. A common used HSBT is 

expressed as followed: 

 
 0 0,

0

( , , ) ( , ) ( , ) ( , )

( , , ) ( , )

xu x z t u x t zw x t f z x t

w x z t w x t

  


  (2.18) 

where f(z) is the shear function which is assigned with respect to realistic distribution of 

transverse shear stress through the thickness of the beam. It can be seen that the accuracy 

of present theory depends strictly on a choice of a f-function. Many previous works of 

choosing this function have been carried out with different approaches [2, 28, 68]. 

Moreover, when the transverse displacement is decomposed into bending part ( , )bw x t  

and shear one ( , )sw x t , a refined HSBT is obtained: 
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  (2.19) 
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Figure 2.12 Kinematics of the CBT, FOBT, HOBT 

2.4.4  Quasi-3D beam theory 

In order to calculate effects of transverse normal stress and to predict more accurate 

behaviors of FG beams. A spread form of the HSBT is developed in which the transverse 

displacement is expressed in term of higher-order shear shape function so that the effect 

of transverse normal strain is captured. Based on this kinematic, a unified displacement 

field of higher order beam theory (quasi 3D beam theory) is established as follows: 
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  (2.20) 

where the comma indicates partial differentiation with respect to the coordinate subscript 

that follows; 0u and   are the axial displacement and rotation, and 0w  and zw  are the 

transverse displacement, respectively.  

2.4.5  Review of the shear functions 

A. Shear stresses in the rectangular beams 

 It is well known that the transverse shear stress of a rectangle section homogeneous 

beam is expressed by the following expression: 
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where Q  is the transverse shear force; 
3
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I   is moment of inertia of the section; b  is 

the width of the cross section; 
yS  is section modulus of an area which is calculted as 

follows: 
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Substituting Eq. (2.22) into Eq. (2.21) leads to the expression of the transverse shear 

stress at any given point z  as follows: 
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Figure 2.13 The shear stress varies over the height of the cross section  

 

The variation of transverse shear stress through the beam depth is displaced in Figure 

2.13 in which it can be seen from this figure and Eq. (2.23) that it satisfies the traction-

free boundary conditions at the top and bottom surfaces of the beam and that the shear 

stress varies in terms of a second-order polynomial of z . Furthermore, if the 

displacement fields of the beams given in Eqs. (18) – (20) are considered, the shear 

functions of the homogeneous beams should be a third-order polynomial. 

 

 

xz
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B. Review of the shear functions 

Different theories can be obtained by chossing their respective shape function ( )f x . 

This topic has attracted many researches with the choice of different polynomial and 

non-polynomial shear functions. Table 2.1 summarises some representative the shear 

functions. 

Table 2.1 The Shear function f(z) 

             Model  f(z) 

Polynomial function: 

Reddy[69], Murthy[70], Levinson 

[42] 

 
 

Kaczkowski [71], Reissner [72], Panc 

[73] 

 

 
 

Ambartsumian [22] 
 

 

Trigonometric function: 

Nguyen et al. [74] 
 

 

Nguyen et al. [22] 
 

 

Touratier[75], Levy[72], Stein[76] 
 

 

Exponential function: 

Karama et al.[77]   

Hyperbolic function: 

Soldatos[69] 
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C. New of the shear functions 

The idea of setting the shear function: 

o Continuous function 

o The deformed face is a curved face. 
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o Satisfy the free condition of the shear stress at the upper and lower boundary of 

the beam. 

o A 3rd – order polynomial to account for homogeneity of the beam while another 

function used for gradient properties of the FGM. 

 

 

(a) 

 

(b) 

Figure 2.14 Variation of the shear functions and its derivative through the beam 

thickness 

 

 

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Shear function f(z)

z
/h

 

 

Reddy

Reissner

Ambartsumian

Nguyen et al.

Touratier

Karama et al.

Soldatos

Akavci



31 

 

Therefore, the form function is selected in the following form:  

         3

1 2 1
f z f z f z f z z     (2.24) 

where the coefficient  are constants. In Eq. (2.24),   3

2
f z z  is a 3rd – order 

polynomial to account for homogeneity of the beam,  and  1
f z  is a function used for 

gradient properties of the FGM. 

A novel higher-order shear function is proposed as follows: 
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 (2.25) 

and its derivative is expressed by: 
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2 2 2 3 2
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r rz
g z

r z h h r
 

 
 (2.26) 

where a parameter r is introduced, namely correction parameter which enables to correct 

the solutions of FG beams. 

2.4.6  Nonlocal elasticity and modified couple stress beam theories 

Nonlocal elasticity beam theory: The experimental studies recently showed that when 

the behaviors of beams are considered at a small scale, the size effect is significant to be 

accounted. Several theories have been developed in which it can be united into Eringen’s 

nonlocal elasticity theory, strain gradient theory, modified couple stress with different 

degrees of success. Based on the Eringen’s nonlocal elasticity theory [78], nonlocal 

constitutive equations are expressed by: 

  21 ij ijt      (2.27) 

where   denotes Laplacian operator;  
2

0e a  is parameter of scale length that 

considers the influences of small size on the response of nanostructures with 0e  is a 

constant appropriate to each material, a is an internal characteristics length (e.g., 
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latticeparameter, granular distance) and tij are global stresses. The constitutive equations 

of FG nano beams are hence written under the following expressions: 
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Modified couple stress beam theory: According to the modified couple stress theory 

proposed by Yang et al. [12], the strain energy density is a function of both strain tensor 

(conjugated with stress tensor) and curvature tensor (conjugated with couple stress 

tensor). Then, the strain energy in a deformed isotropic linear elastic body occupying a 

volume V can be written as 

  
1

2
M

V

U dV  σε mχ          (2.29) 

where   is the stress tensor,  is the strain tensor, m is the deviatoric part of the couple 

stress tensor, and χ  is the symmetric curvature tensor. These tensors are defined by 

   2tr  σ I+          (2.30) 

 22l m          (2.31) 

  
1

2

T    
 

ε u u          (2.32) 

  
1

2

T
     

 
χ          (2.33) 

where u is the displacement vector,   and   are Láme’s constants, l is the material 

length scale parameter which reflects the effect of couple stress, and   is the rotation 

vector that can be expressed as 

1
curl

2
  u            (2.34) 
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Based on the kinematics of the beams, the rotation around the coordinate axes x, y and 

z is added into its kinematics as follows: 
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  (2.35) 

Substitution of Eq. (2.35) into (2.33) yields the following expression for the non-zero 

components of the symmetric curvature tensor 

 , , 0
y y

xy zy xx yy zz xz
x z

  
     

 
χ χ χ χ χ χ      (2.36) 

2.5  Analytical and numerical methods for analysis of FG beam 

Various analytical and numerical approaches have been used for the analysis of FG 

beams, only some representative are presented in this section. It is known that the 

analytical methods generally lead to the solutions with high accuracy, however its 

application is limited to the problems with simple geometries, boundary, and loading 

conditions. Therefore, for complex problems, the numerical methods are commonly 

used. Until now, different analytical and numerical methods are employed by researchers 

for analyzing FG beams such as Navier solution, Levy solution, Ritz method, differential 

quadrature method, Lagrange multiplier method, Chebyshev collocation method, finite 

element method, shooting method, meshless method etc. In this section, a literature on 

the use of analytical and numerical methods for the analysis of FG beams is reviewed. 

2.5.1  Navier method 

Navier procedure is known as the simplest one to analyse behaviours of FG beams, 

however this solution is only applied to the simply-supported beams. Based on this 

approach, the displacement variables are approximated under trigonometric functions 
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that satisfy the simply supported boundary conditions. For example, the displacement in 

Eq. (2.17) as follows, 
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where j

j

L


  , ω is the natural frequency, i2 = -1 the imaginary unit. The transverse 

mechanical load q is also approximated under sinus form: 
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  (2.38) 

where 

 
0

2
sin

L

j jq q xdx
L

   (2.39) 

where 
jq  is amplitude of the load. For a uniform load with density 0q , 04

j

q
q

j
  with 

j=1, 3, 5, . . . 

2.5.2  Differential Quadrature Method (DQM) 

The Differential Quadrature Method (DQM) was developed by Bellman and Casti [25] 

but it has been popularized in recent years by Jang et al. [79], Striz et al. [80], Bert et al.  

[76], Laura and Gutierrez [81]. This approach has been used for analysis of FG beams 

and plates. Liew et al.[82], Han and Liew [83] also used a similar approach to analyze 

irregular quadrilateral thick plates. Lam [84] introduced a mapping technique to apply 

the DQM for conduction, torsion, and heat flow problems with arbitrary geometries.  

Pradhan and  Murmu [85] presented thermo-mechanical vibration analysis of FG beams. 

The basic idea in the DQM is to approximate the derivative of a function as a weighted 

linear combination of the function values at all the discrete grid points in the whole 

https://scholar.google.com.vn/citations?user=Ay5C4NsAAAAJ&hl=vi&oi=sra
https://scholar.google.com.vn/citations?user=Ay5C4NsAAAAJ&hl=vi&oi=sra
https://scholar.google.com.vn/citations?user=JyYaOOEAAAAJ&hl=vi&oi=sra
https://www.sciencedirect.com/topics/physics-and-astronomy/vibration
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domain of the spatial coordinate. Let consider a polynomial P(x), the derivatives of order 

m of P(x) as a linear combination of the values P(xj) as follows: 

     
1

N
m

i ij j

j

P x c P x


  (2.40) 

where the discrete grid points xi and the weighting coefficients xj can be determined by 

different methods [86]. The coefficients cij are determined by letting Eq. (2.40) be exact 

to a test function which can be chosen under polynomial, generalized polynomial 

Legendre. Once the weighting coefficient cij is obtained, the high order differential 

equations could be easily obtained by repeating the same method. Thus, any partial 

differential equations can be reduced to a system of linear algebraic equations. This 

method has been successfully applied for static, buckling and free vibration analysis of 

FG beams [87-90]. In practice, the disadvantages of the DQM result in the uncertainties 

or controversy with selecting the test functions and the grid points. 

2.5.3  Ritz method 

In order to avoid the limitations of Navier approach, various studies have been focused 

on the development of Ritz method for analysis of FG beams. Some representative 

previous works can be cited herein. Simsek [24] carried out static analysis of a FG simply 

supported beam subjected to a uniformly distributed load by using the Ritz method 

within the framework of Timoshenko and the higher order shear deformation beam 

theories. In this study, various material distributions on the displacements and the 

stresses of the FG beam are examined. Recently, Simsek [91] applied Euler–Bernoulli 

and Timoshenko beam models for the first time to investigate the buckling of beams 

composed of 2D-FGM. The dimensionless critical buckling load is obtained for 2D-FG 

beams. Pradhan and Chakraverty [23, 92, 93] presented the free vibration analysis of FG 

beams subjected to different sets of boundary conditions using Ritz method and Euler–

Bernoulli’s beam theory, Timoshenko’s beam theory and HSDTs. Fazzolari [94] 

investigated the free vibration characteristics of metallic and FG short and slender beams 

with arbitrary boundary conditions. It is carried out based on advanced and refined quasi-
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3D beam models by using the method of power series expansion of displacement 

components and the Ritz method. Chen et al. [95] presented the elastic buckling and 

static bending of FG porous beams with various boundary conditions and two different 

porosity distributions using Timoshenko’s beam theory. The Ritz method is employed 

to obtain the critical buckling load, transverse bending deflection, and normal bending 

stress. The effects of porosity coefficient and slenderness ratio on the critical buckling 

load, maximum deflection, and associated stress distribution are discussed. Chen et al. 

[96] also presented the free and forced vibration characteristics of FG porous beams with 

non-uniform porosity distribution using Timoshenko’s beam theory. Zhang [97, 98] 

developed a new model of the FG beams based on physical neutral surface and HSDT 

for the nonlinear bending and buckling analysis using the Ritz method. 

Wattanasakulpong et al. [99] presented free vibration of FG beams under ambient 

temperature based on improved third order shear deformation theory using the Ritz 

method. Ghiasian et al. [100] studied dynamic buckling and imperfection sensitivity of 

the FG Timoshenko’s beam subjected to sudden uniform temperature rise by using the 

Ritz method. 

Based on the Ritz method, the displacement variables are approximated as follows: 
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  (2.41c) 

Where 
ju ,

jw , 
j are variables to be determined; ( )j x and ( )j x are shape functions.  It 

is noted that the accuracy of solution depends on choice of these functions. These shape 

functions can be satisfying kinetic boundary conditions, conversely a penalty function 

method can be used to recover the boundary conditions. 
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Properties of approximation functions 

In order to ensure that the characteristic equations resulting from the Ritz procedure have 

a solution, and the approximate solution converges to the exact solution of the problem 

as the number of parameters N  is increased, the choice of the shape function should be 

satisfied the following requirements [101]: 

1.  ,   should satisfy the specified essential boundary conditions associated with the 

variational formulation 

2.  ,    should satisfy the following three conditions: 

(a) Be continuous as required in the variational statement (i.e.,  ,   should be such 

that it has a nonzero contribution to the virtual work statement); 

(b) Satisfy the homogeneous form of the specified essential boundary conditions; 

the set ,j j   are linearly independent and complete.  

The completeness property is defined mathematically as follows. Given a function u and 

a real number 0  , the sequence ,j j  is said to be complete if there exists an integer 

N  (which depends on  ) and scalars 1 2, , , Nu u u  such that: 

 

N

j j

j

u c     (2.42) 

where .  denotes a norm in the vector space of functions u. The linear independence of 

a set of functions 
j  refers to the property that there exists no trivial relation among 

them; i.e., the relation 

 1 1 2 2 ... 0N N          (2.43) 

holds only for all 0j  . Thus no function is expressible as a linear combination of 

others in the set. 

The Ritz method can be applied, in principle, to any physical problem that can be cast in 

a weak form - a form that is equivalent to the governing equations and natural boundary 
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conditions of the problem. In particular, the Ritz method can be applied to all structural 

problems since a virtual work principle exists. 

2.5.4  Finite element method 

The Finite Element Method (FEM) is a well-established numerical method that can be 

used for a variety of engineering applications. It is a robust method that uses a systematic 

approach to solve complex systems by breaking the problem down into simpler forms. 

Polynomial shape functions are typically used, and then an element mass and stiffness 

matrices are produced. For modal analysis, the problem reduces into a linear eigenvalue 

problem, which when solved yields the natural frequencies, static, bending and mode 

shapes of the system. The strength of FEM lies in its versatility, complex/irregular 

geometries and bodies of different materials can be analyzed with relative ease. Various 

loading types and boundary conditions can be introduced into a model. By its advantage, 

many authors used the FEM for behavior analysis of FG beams, only some representative 

previous works are citing herein. Alshorbagy et al. [102] investigated free vibration 

characteristics of FG beams by using a finite element method and Euler–Bernoulli beam 

theory. The material constituents of beams assumed to be varying through the thickness 

and longitudinal directions according to a simple power law. The effects of various 

boundary conditions, power-law index and slenderness ratio are investigated in this 

study. Vo et al. [7] developed a finite element model based on a refined shear 

deformation theory which accounts for shear deformation effect and coupling coming 

from the material anisotropy to study the static and vibration analysis of FG beams with 

various boundary conditions. Chakraborty et al. [103] developed a new beam element to 

study the thermo elastic behavior of FG cantilever beam based on the FSDT. Both 

exponential and power law variations of material property distribution are used to 

examine different stress variations. It has been found that presence of FG layer in 

structures results in a significant difference in its response from its parent material beams 

due to the presence of coupled stiffness and inertial parameters. El-Ashmawy et al. [104] 
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carried out static and dynamic analysis of axially or transversally FG beams using the 

FSDT-based finite element method. Nazargah [105] investigated performance of 

NURBS-based is geometric approach for the coupled thermo-mechanical analysis of 

bidirectional FG beams using high-order global–local theory. Anandrao et al. [106, 107] 

studied large amplitude free vibration and thermal post-buckling of FG beams using 

finite element formulation based on Timoshenko’s beam theory. 

The beam is represented as a (disjoint) collection of finite elements 
e

e

 

   in 

(Figure. 2.15). 

 

Figure 2.15 Discrete beams into finite elements. 

On each element displacements and the test function are interpolated using shape 

functions and the corresponding nodal values. 
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 (2.44) 

where n is number of nodes per element, 
ju , 

jw , 
j  are nodal values of displacements;  

( )j x and ( )j x are the shape function of node j. To obtain the characteristic FE 

equations, the preceding approximative variables are introduced into the energy 

functional. It is noted that the integrals in the weak form depend on the derivatives of 

,u wand . Therefore, a continuity characteristic on the approximate function is required.  

A function f:   is of class  k kC C   if its derivatives of order ith-order, where 

0 i k   are continuous functions.  
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Figure 2.16 Continuous function 
0C and 

1C . 

For example, it is known that the weak form of energy functional of HSBT is expressed 

in terms of the first derivative of axial displacement u and  rotation angle  , and second 

derivative of transverse displacement w. Therefore, the interpolation function of u and   

can use linear interpolation functions which satisfy continuous condition 
0C  while the 

Hermite interpolation function can be used for approximating the transverse 

displacement to satisfy continuous condition 
1C . In addition, these interpolation 

functions need to satisfy the delta knonecker condition. 

Linear shape function: 

 

Figure 2.17 Linear shape functions for an element of length le  

The linear shape function is the most polynomial for the two-nodes beam element in 

Figure 2.17 is drawn from the two displacement conditions at the two nodes, written in 

the following form: 

   1 21 ,
e e

x x
x x

l l
     (2.45) 
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Hermite shape function: 

Hermite shape function for beams is a 3rd – order polynomial which is approximated 

through the value of linear displacement in the z direction and its derivative at the nodes. 

It is given as follows: 
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Figure 2.18 Hermite shape functions for one-dimensional finite element 

2.5.5  Other methods 

As mentioned in the previous section, the study on behaviors of FG beams has attracted 

a number of researches with different approaches. Beside Navier method, Ritz method, 

DQM, FEM, other methods have been used for analysis of FG beams can be listed as 

follows. Trinh et al. [108] presented Levy’s solution for investigating vibration and 
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buckling behaviors of FG beams subjected to thermo-mechanical loads using Reddy’s 

third-order shear deformation theory. Shvartsman and Majak [109] presented the method 

of initial parameters for the buckling analysis of FG beams resting on elastic foundation 

using Euler–Bernoulli’s beam theory. Huynh et al. [110] analysed free vibration of 

bidirectional FG Timoshenko’s beams using isogeometric finite element method with 

1D-NURBS basis functions. Meshless methods which are the most promising ones for 

analysis of complex engineering problems, have been used for static and dynamic 

analysis of FG beams. Giunta et al. [111] presented a unified formulation of 1D beam 

models for the static analysis of FG beams using a meshless method based on 

multiquadric radial basis functions. Yang et al. [112] presented forced vibration of 2D 

FG beams using meshfree boundary-domain integral equation method. Qian and Ching 

[113] used a meshless Local Petrov–Galerkin method to study the free and forced 

vibration of FG cantilever beam. In this work, an orthogonal transformation technique is 

used to directly enforce nodal variables in the essential boundary areas, and the test 

function is chosen to equal the weight function of the moving least squares 

approximation. 

2.6  Conclusions 

This chapter focused on a review of literature on beam theories and solution methods for 

the bending, buckling, and vibration analysis of FG beams.  Following conclusions can 

be drawn based on the literature reviewed. 

 The development of higher-order shear deformation beam theories has been recently 

studied, however a number of researches on the development of a general HSBT is 

still limited. Moreover, in the whole literature, more attention is given to the analysis 

of the FG beams without effects of transverse normal deformations. As far as the 

authors are aware, these effects of transverse normal deformations are still limited 

available in the literature.  
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 The Ritz method shows an efficient and simple one in predicting behaviors of 

composite structures, however practically the accuracy of this approach depends on a 

suitable choice of the shape function. A development of the shape function of the Ritz 

method is also a research topic to carry out. 

 Despite of many works available on the bending, buckling and vibration analysis of 

single layer FG beams under mechanical loads, the studies on the bending, buckling 

and vibration analysis of FG sandwich beams in hygro-thermo-mechanical 

environments are rare in the literature.  

 The effect of boundary conditions on behaviors of FG microbeams is also a problem 

which is still not studied yet. 

 A novel shear function for the higher-order shear deformation beam theory has been 

proposed in which it composed of a third-order polynomial and inverse hyperpolic 

sinus function, and that a correction parameter has also introduced to correct the 

solution field of FG beams. 
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Chapter 3 

Novel higher-order shear deformation 

theories for analysis of isotropic and 

functionally graded sandwich beams 
 

 

 

 

This chapter proposes a novel general higher-order shear deformation beam theory for analysis of 

isotropic and functionally graded sandwich beams. A general theoretical formulation is derived from 

the fundamental of two-dimensional elasticity theory and then novel higher-order shear deformation 

beam theories are obtained.  

The highlight of this chapter is follows: 

- A new unified theoretical formulation of higher-order shear deformation beam theory is 

established. 

- A new inverse hyperbolic-sine higher-order shear deformation beam theory for analysis of 

functionally graded beams is proposed. 

- A novel three-variable quasi-3D shear deformation theory for analysis of functionally graded 

beams. 

- Numerical results derived the Navier and Ritz methods are compared to those from previous works 

in order to verify the accuracy of the proposed theories and to investigate effects of material 

distribution through the beam thickness, thickness ratio of layers, span-to-thickness ratio and 

boundary conditions on the deflection, stresses, critical buckling load and natural frequencies. 
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3.1 Introduction 

Functionally graded (FG) materials are composite materials formed of two or more 

constituent phases with a continuously variable composition. Sandwich structures are 

widely employed in aerospace and many other industries. These structures become even 

more attractive due to the introduction of FG materials for the faces and the core. 

Typically, there are three typical FG beams: isotropic FG beams, sandwich beams with 

homogeneous core and FG faces, and sandwich beams with FG core and homogeneous 

faces. With an increase of the application of FG sandwich structures in the engineering 

field, understanding behaviors of FG sandwich beams becomes an important task. 

For FG beams, their behaviors can be generally predicted using either three-dimensional 

(3D) elasticity theory or equivalent single-layer beam theories such as classical beam 

theory (CBT), first-order shear deformation beam theory (FSBT), third-order shear 

deformation beam theory (TSBT) and higher-order shear deformation beam theory 

(HSBT). Based on the 3D elasticity theory, Sankar [114] derived the exact solutions for 

bending analysis of FG beams subjected to transverse loads. Zhong and Yu [115] also 

used 3D elasticity theory to predict the bending responses of cantilever FG beams under 

concentrated and uniformly distributed loads. The bending responses of FG beams were 

investigated by Benatta et al. [75], Ben-Oumrane et al. [116] and Thai and Vo [117] 

using various equivalent single-layer beam theories. Kapuria et al. [118] presented a 

finite element model for static and free vibration responses of layered FG beams using 

third-order zigzag theory and validated against experiments for two different FGM 

systems under various boundary conditions. Using a unified formulation, Giunta et al. 

[119] presented several beam theories for the static analysis of FG beams. Chakraborty 

et al. [103] developed a new beam finite element based on the FSBT to study static, free 

vibration and wave propagation problems in bi-material beams fused with FGM layer. 

Li [120] presented a new unified approach for analyzing the static and dynamic 

behaviors of FG beams with the rotary inertia and shear deformation included. Li and 
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Batra [121] derived analytical relations between the critical buckling load of a FG 

Timoshenko’s beam and that of the corresponding homogeneous Euler-Bernoulli beam 

subjected to axial compressive load. Kadoli et al. [122] adopted the TSBT to develop a 

beam finite element to study the static behavior of FG beams under uniformly distributed 

loads. Li et al. [123] derived analytical solutions for static and dynamic analysis of FG 

beams using TSBT. Based on the FSBT, Nguyen et al. [4] recently proposed the static 

and free vibration analysis of axially loaded FG beams in which an improved transverse 

shear stiffness has been introduced. It should be noted that the CBT is applicable to 

slender beams only. For moderately deep beams, it underestimates deflection and 

overestimates buckling load and natural frequencies due to ignoring the shear 

deformation effect. The FSBT accounts for the shear deformation effect, but requires a 

shear correction factor. Alternatively, the HSBT considers the shear deformation effect 

without requiring any shear correction factors. However, the efficiency of the HSBT 

depends on the appropriate choice of displacement field which is an interesting subject 

that attracted many research (see [7, 20, 28, 99, 116, 118, 122-128] for more details).  

Although there are many works on the FG beams, the studies on behaviors of FG 

sandwich beams are still limited. Bhangale and Ganesan [129] studied vibration and 

buckling behaviors of an FG sandwich beam having constrained viscoelastic layer in 

thermal environment by using finite element formulation. Amirani et al. [130] used the 

element-free Galerkin method for free vibration analysis of sandwich beam with FG 

core. Bui et al. [31] investigated transient responses and natural frequencies of sandwich 

beams with inhomogeneous FG core using a truly mesh-free radial point interpolation 

method. Vo et al. [131] studied free vibration and buckling behaviors of FG sandwich 

beams by a finite element model using the TSBT. Nguyen et al. [5] proposed vibration 

and buckling analysis of FG sandwich beams with various boundary conditions using 

Ritz methods. In order to take into account shear and normal deformations, the quasi-3D 

theories are developed based on a higher-order variation of both axial and transverse 
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displacements. Based on 1D Carrera’s Unified Formulation [132], he and his co-workers 

[119, 133, 134] investigated various structural problems. As far as the knowledge of the 

authors goes, there is still limited work on static, vibration and buckling of FG sandwich 

beams using a quasi-3D theory. Vo et al. [135, 136] developed finite element models to 

investigate FG sandwich beams using a quasi-3D polynomial theory. Mantari and 

Yarascab [137, 138], and Osofero et al.[139] derived Navier solution for bending, 

vibration and buckling of FG sandwich beams using non-polynomial quasi-3D theories, 

respectively. 

This chapter aims to present novel unified higher-order shear deformation theories for 

bending, buckling and free vibration analysis of FG sandwich beams in which a new 

general theoretical formulation based on the framework of elasticity theory, a new 

inverse hyperbolic-sine shape function for a higher-order shear deformation theory and 

a new three-variable quasi-3D beam theory are proposed. Variational functional of 

Hamilton’s and Lagrange’s are used to derive characteristic equations of motion, and 

then the Navier and Ritz solution methods are applied to solve the problems. Three types 

of FG sandwich beams namely FG beams (Type A), FG faces and homogeneous ceramic 

core (Type B) and FG core and homogeneous faces (Type C) are considered. Numerical 

results are compared with those from previous studies and to investigate effects of the 

material distribution, span-to-depth ratio, skin-core-skin thickness ratios and boundary 

conditions on the static, buckling and free vibration behaviors of FG sandwich beams. 

3.2 Novel unified theoretical formulation of higher–order shear deformation beam 

theories 

Consider a beam in Figure 2.1 with length L and cross-section b×h. In order to derive a 

general kinetic displacement field of the beam, a plane stress problem in (x, z) - 

coordinate system is supposed.  

 The relations of strain – stress for two-dimensional problem are given by: 
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1

x x z
E

     (3.1a) 

  
1

z z x
E

     (3.1b) 

 
1

xz xz
G

   (3.1c) 

where ,E   are Young’s modulus and Poisson’s ratio; 
 2 1

E
G





 is shear modulus. 

The linear relations of strains and displacements are expressed by: 

 
, , , ,, ,x x z z xz z xu w u w       (3.2) 

where ,u w  are axial and transverse displacements, respectively; the comma indicates 

partial differentiation with respect to the coordinate subscript that follows. Substituting 

Eq. 3.2 into Eqs. 3.1 leads to: 

  ,

1
x x zu

E
    (3.3a) 

  ,

1
z z xw

E
    (3.3b) 

 , ,

1
z x xzu w

G
   (3.3c) 

By supposing that      1,xz xx z g z Q x   where  xQ x  is transverse shear force,  1g z  

is a shape function that satisfies the traction-free boundary conditions at the top and 

bottom surface of the beam. Integration Eq. 3.3b leads to: 

      0

0

1
,

z

z xw x z w x dz
E

     (3.4) 

and then substituting Eq. (3.4) into Eq.(3.3c) leads to: 

    
 

 1

, , 0, , ,

0

1
z

z x x z x x x x

g z
u w w x dz Q z

E G
        (3.5) 

If the effect of the integral term is neglected, the integration of Eq. (3.5) leads to: 
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        0 0, 1, x xu x z u x w z f z Q x     (3.6) 

with  
 1

1

g z
f z

G
 . Moreover, the equilibrium equations of the beams without volume 

forces are expressed by: 

 
, , 0x x xz z   ,  

, , 0xz x z z    (3.7) 

from which by omitting the integral coefficients, the axial and normal transverse stresses 

are determined from the transverse shear stress as follows: 

      '

1,x xx z g z R x     (3.8a) 

    2 ,,z x xx z g z Q     (3.8b) 

where, 

  
0

x

x xR x Q dx    (3.9a) 

    2 1

0

z

g z g z dx    (3.9b) 

Substituting Eqs. (3.8) into Eq. (3.4) leads to: 

        0 2 , 3, x x xw x z w x f z Q f z R     (3.10) 

where 

  
 2

2

0

z g z
f z dz

E
    (3.11a) 

  
 '

1

3

0

z g z
f z dz

E


    (3.11b) 

A general formulation of the displacement field of the beam is finally obtained by Eqs. 

(3.6) and (3.10) as follows: 

        0 0, 1, x xu x z u x w z f z Q x     (3.12a) 

        0 2 , 3, x x xw x z w x f z Q f z R     (3.12b) 
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from which different HSBTs can be derived. It is noted that the expression given in Eq. 

(3.12) is a general displacement of the beam based on the elasticity theory in which both 

axial and transverse displacements are approximated in the beam thickness direction. If 

the effect of normal transverse strain is neglected, i.e.    0,w x z w x , Eqs. (3.12) 

becomes: 

        0 0, 1, x xu x z u x w z f z Q x     (3.13a) 

    0,w x z w x   (3.13b) 

Example 1: The material properties are supposed to be constant in the beam, the 

transverse shear force is assumed to be expressed as follows ([140]): 

    0,

5

6
x x x

Gh
Q x w    (3.14) 

Where x is rotation at the mid-axis of the beam. Eqs. (3.13) lead to a novel general 

formulation of the HSBT as follows: 

       2 2
0 0,

5 5
,

6 6
x x

hg hg
u x z u x z w x

 
    

 
  (3.15a) 

    0,w x z w x   (3.15b) 

where it holds three variables 0 0, , xu w   and a higher-order shape function  2g z  defined 

in Eq. (3.9b). It is noted that the accuracy of the theory strictly depends on a choice of 

the shape function. For example, taking the shape function given by Reissner [140]: 

   
2 3

1 22 2

3 4 3 4
1 ,

2 2 3

z z
g z g z z

h h h h

   
      

   
 into Eq. (3.15a) leads to: 

      
3 3

0 0,2 2

5 5 5
,

4 3 4 3
x x

z z z z
u x z u x w x

h h


   
       

   
  (3.16a) 

    0,w x z w x   (3.16b) 
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which is a HSBT proposed Reissner [140] and Shi [141] for analysis of plates. The earlier 

numerical results based on Eqs. (3.16) for the plates showed its accuracy and efficiency 

in predicting static and dynamic behaviors of the plates.  

Example 2: Another approach is supposed that the transverse shear force is expressed 

under the form: 

   x xQ x G   (3.17) 

that leads to another HSBT which is commonly used by many researches: 

        0 0, 2, x xu x z u x w z g z x     (3.18a) 

    0,w x z w x   (3.18b) 

Example 3: For functionally graded beams, the previous work of Nguyen et al. [3, 4] 

revealed that the transverse shear force is expressed by: 

    0,x x xQ x H w    (3.19) 

where the improved shear stiffness is given by: 

 
 

   

1
2

/2

11 11
/2

/2 /2

 with ,

z z
h z z

z z
h

h h

bA dB
H dz A Q d B Q d

G
   




 

 
   
 
 
     (3.20) 

and b , d are components of the compliance matrix (see [4] for more details). 

Substituting Eq. (3.19) into Eq. (3.13a) leads to another novel HSBT as follows: 

          0 1 0, 1, x xu x z u x Hf z z w Hf z x         (3.21a) 

    0,w x z w x   (3.21b) 

Example 4: In order to consider the effect of transverse normal strain, the general form 

of the transverse displacement in Eq. (3.12b) should be considered in which for 

simplicity purpose, the effect of normal stress can be neglected, that leads to: 

        0 0, 1, x xu x z u x w z f z Q x     (3.22a) 

      0 3, xw x z w x f z R    (3.22b) 
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which is a general form of quasi-3D beam theory. For the shear force given in Eq. (3.17) 

and the material properties are supposed to a priori constant, a common quasi-3D beam 

theory is recovered: 

        0 0, 2, x xu x z u x w z g z x     (3.23a) 

    
 

   0 1,
2 1

zw x z w x g z w x



 


  (3.23b) 

where    0,

0

x

z x xw x w dx  . If the term 
 2 1




 is neglected, the displacement field 

in Eqs. (3.23) is commonly used by many researches. 

        0 0, 2, x xu x z u x w z g z x     (3.24a) 

        0 1, zw x z w x g z w x    (3.24b) 

 Similarly, if the transverse shear force is taken as Eq. (3.14), a new quasi-3D beam 

theory is obtained as follows: 

      2 2
0 0,

5 5
,

6 6
x x

hg hg
u x z u x z w x

 
    

 
  (3.25a) 

    
 

   0 1

5
,

12 1
z

h
w x z w x g z w x




 


  (3.25b) 

Moreover, if the expression of the transverse shear force in Eq. (3.19) is considered for 

functionally graded beams, another novel quasi-3D beam theory is obtained as follows: 

          0 1 0, 1, x xu x z u x Hf z z w Hf z x         (3.26a) 

        0 3, zw x z w x Hf z w x    (3.26b) 

Some novel beam models based on the higher-order shear deformation theory with 

higher-order variations of axial displacement or both axial and transverse displacements 

are summarized in Table 3.1. 
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Table 3.1 Unified higher-order shear deformation theories 

Name Kinematics 

HSBT1        0 0, 2, x xu x z u x w z g z x      

   0,w x z w x  

HSBT2 
     2 2

0 0,

5 5
,

6 6
x x

hg hg
u x z u x z w x

 
    

 
   

   0,w x z w x  

HSBT3          0 1 0, 1, x xu x z u x Hf z z w Hf z x          

   0,w x z w x    

Quasi-3D0        0 0, 2, x xu x z u x w z g z x     

       0 1, zw x z w x g z w x     

Quasi-3D1        0 0, 2, x xu x z u x w z g z x    

   
 

   0 1,
2 1

zw x z w x g z w x



 


   

Quasi-3D2 
     2 2

0 0,

5 5
,

6 6
x x

hg hg
u x z u x z w x

 
    

 
   

   
 

   0 1

5
,

12 1
z

h
w x z w x g z w x




 


   

Quasi-3D3          0 1 0, 1, x xu x z u x Hf z z w Hf z x          

       0 3, zw x z w x Hf z w x     
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Table 3.2 Unified refined higher-order shear deformation theories 

Name Kinematics  

RHSBT1        0 0, 2 0,, b s

x xu x z u x w z g z w x      

     0 0, b sw x z w x w x   

RHSBT2 
     2 2

0 0, 0,

5 5
,

6 6

b s

x x

hg hg
u x z u x z w w x

 
    

 
   

     0 0, b sw x z w x w x     

RHSBT3          0 1 0, 1 0,, b s

x xu x z u x Hf z z w Hf z w x        

     0 0, b sw x z w x w x     

Rquasi-3D0        0 0, 2 0,, b s

x xu x z u x w z g z w x      

         0 0 1, b s

zw x z w x w x g z w x      

Rquasi-3D1        0 0, 2 0,, b s

x xu x z u x w z g z w x      

     
 

   0 0 1,
2 1

b s

zw x z w x w x g z w x



  


   

Rquasi-3D2 
     2 2

0 0, 0,

5 5
,

6 6

b s

x x

hg hg
u x z u x z w w x

 
    

 
   

     
 

   0 0 1

5
,

12 1

b s

z

h
w x z w x w x g z w x




  


   

Rquasi-3D3          0 1 0, 1 0,, b s

x xu x z u x Hf z z w Hf z w x          

         0 0 3, b s

zw x z w x w x Hf z w x      
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Furthermore, the transverse displacement can be decomposed into a bending part and 

shear one:      0 0 0

b sw x w x w x   and by setting 0,

s

x xw   , the displacement field 

given in Examples 1-4 can be rewritten to formulate refined HSBTs as Table 3.2. 

3.3 Analysis of static, buckling and vibration of FG beams based on the HSBTs 

In order to formulate varied functional of the FG beams based on the HSBTs proposed 

in Table 3.1, only the displacement field of HSBT2 is chosen for details. 

3.3.1 Kinematics, strains and stresses 

The displacement field of the HSBT2 is given by: 

          0 1 0, 2, x xu x z u x g z w g z x     (3.27a) 

    0,w x z w x   (3.27b) 

where   2
1

5

6

hg
g z z  ,   2

2

5

6

hg
g z  . The non-zeros strains associated to 

displacements in Eqs. (3.27) are expressed by: 

          0, 1 0, 2 ,,x x xx x xx z u x g z w g z x      (3.28a) 

    1
0,

5
,

6
xz x x

hg
x z w     (3.28a) 

where    '

1 2g z g z  which is chosen under form: 
1 0

2

h
g z
 

   
 

. The constitutive 

equations are therefore obtained as follows: 

            0, 1 0, 2 ,, ,x x x xx x xx z E x z E u x g z w g z x          (3.29a) 

      1
0,

5
, ,

6
xz xz x x

Ghg
x z G x z w       (3.29b) 

It is noted from Eq. 3.29b that the transverse shear stress satisfies the traction-free 

boundary conditions on top and bottom surfaces of the beam. 

3.3.2 Variation formulation 
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In order to derive the equations of motion of the beam, Hamilton’s principle is used: 

  
0

0

T

U V K dT      (3.30) 

where U, V, K are strain energy, work done by external force and kinetic energy of the 

beams. The variation of the strain energy is given by: 

 

 

 0, 0, , 0,

0

x x xz xz

V

L

b s

x x x xx x x x x x x

U dV

N u M w M Q w dx

    

    

 

      




  (3.31) 

where the stress resultants , ,b b

x x xN M M  are defined by: 

    
/2

1 2

/2

, , 1, ,

h

b s

x x x x

h

N M M g g bdz


    (3.32a) 

 
 /2

1

/2

5

6

h

x xz

h

hg z
Q bdz



    (3.32b) 

which can be written under the explicit form as follows: 

 0, 0, ,

s

x x xx x xN Au Bw B      (3.33a) 

 0, 0, ,

b s

x x xx x xM Bu Dw D      (3.33b) 

 0, 0, ,

s s s s

x x xx x xM B u D w H      (3.33c) 

  0,

s

x x xQ A w    (3.33d) 

where , , , , , ,s s s sA B D B D H A  are the stiffness’s of the beams defined by: 

     
/2

2 2

1 2 1 1 2 2

/2

, , , , , 1, , , , ,

h

s s s

h

A B B D D H E z g g g g g g bdz


    (3.34a) 

 

2/2

1

/2

5

6

h

s

h

hg
A G bdz



 
  

 
   (3.34b) 

The variation of work done by transverse load q and axial force 0

xN  is calculated by: 
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0

0 0, 0

0 0

L L

x xxV q w dx N w w dx        (3.35) 

The variation of kinetic energy is expressed by: 

 

 

  





0 1 0, 2 0 1 0, 2 0 0

0 0 0 1 0 0, 2 0 1 0, 0 1 0, 0,

0

1 0, 2 0 1 0, 2 0 0 0

V

x x x x

V

L

x x x x x

x x x x x x x

K u u w w dV

u g w g u g w g w w dV

I u u I u w I u I w u J w w

K w I u K w J I w w dx

   

     

    

       

 

      
 

    

    







  (3.36) 

where the terms of inertia 0 1 2 1 2 1, , , , ,I I I J J K  are defined by: 

    
/2

2 2

0 1 2 1 1 2 1 2 1 1 2 2

/2

, , , , , 1, , , , ,

h

h

I I I J K J g g g g g g bdz


    (3.37) 

Substituting Eqs. (3.31), (3.35) and (3.36) into Eq. (3.30), and then integrating by part 

the subsequence leads to the following equilibrium equations: 

 0 , 0 0 1 0, 2: x x x xu N I u I w I      (3.38a) 

 
0

0 , , 0, 0 0 1 0, 1 0, 1 ,: b

x xx x x x xx x xx x xw M Q q N w I w I u J w K          (3.38b) 

 , 2 0 1 0, 2: s

x x x x x xM Q I u K w J       (3.38c) 

Substituting Eqs. (3.33) into Eqs. (3.38) leads to: 

 0, 0, , 0 0 1 0, 2

s

xx xxx x xx x xAu Bw B I u I w I        (3.39a) 

 
  0

0, 0, , , 0, 0,

0 0 1 0, 1 0, 1 ,

s s

xxx xxxx x xxx x x xx x xx

x xx x x

Bu Dw D A w q N w

I w I u J w K

 



     

   
  (3.39b) 

  0, 0, , 0, 2 0 1 0, 2

s s s s

xx xxx x xx x x x xB u D w H A w I u K w J           (3.39c) 

Eqs. (3.39) are equations of motion of the beam from which the bending, buckling and 

vibration responses of the beam can be obtained. 
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3.3.3 Navier solution 

The Navier solution procedure is used to determine analytical solutions for simply-

supported functionally graded beams. The solution is assumed to be of the form: 

  0

1

, cos i t

m

m

u x t u xe 




   (3.40a) 

  0

1

, sin i t

m

m

w x t w xe 




  (3.40b) 

  
1

, cos i t

x m

m

x t xe   




   (3.40c) 

where   is the natural frequency, 
2 1i    the imaginary unit, /m L  .The transverse 

load  q x is also expressed as: 

 
 

1

sinm

m

q x q x




  (3.41) 

where 04 /mq q m ( 1,3,5,...m  , etc.) for uniformly distributed load with density 0q . 

Assuming that the beam is subjected to an in-plane compressive load 
0 0

xxN N  . 

Substituting Eqs. (3.40) and (3.41) into Eqs. (3.39), the following characteristic problem 

is obtained: 

 

11 12 13 11 12 13

2

12 22 23 12 22 23

13 23 33 13 23 33

0

0

m

m m

m

uk k k m m m

k k k m m m w q

k k k m m m





       
       

        
              

 (3.42) 

where, 

 

2 3 2

11 12 13

4 2 2 3

22 0 23

2

33

2

11 0 12 1 13 2 22 0 1

23 1 33 2

, , ,

, ,

;

, , , ,

,

s

s s s

s s

k A k B k B

k D A N k D A

k H A

m I m I m I m I J

m K m J

  

    



 



  

    

 

    

 

 (3.43) 
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3.4 Analysis of static, buckling and vibration of FG beams based on the Quasi-3D 

In order to formulate varied functional of the FG beams based on the quasi-3Ds proposed 

in Table 3.1, only the displacement field of Quasi-3D2 is chosen for details. 

3.4.1 Kinematics, strains and stresses 

The displacement field of Quasi-3D2 is given by: 

          0 1 0, 2, x xu x z u x g z w g z x     (3.44a) 

    
 

   0 1

5
,

12 1
z

h
w x z w x g z w x




 


 (3.44b) 

The non-zeros strains associated to displacements in Eqs. (3.44) are expressed by: 

          0, 1 0, 2 ,,x x xx x xx z u x g z w g z x      (3.45a) 

  
 

   '

1

5
,

12 1
z z

h
x z g z w x








  (3.45b) 

   1
0, ,

5
,

6
xz x x z x

hg
x z w Gw        (3.45c) 

The constitutive equations are therefore obtained as follows: 

 
11 13

13 112

55

1 0 0

1 0 0
1

1 0 0
0 0

2

x x x

z z z

xz xz xz

Q Q
E

Q Q

Q

   

   


   

 
        
       

                        
 
 

 (3.46) 

Eqs. (3.45c) and (3.46) show that the transverse shear stress satisfies the traction-free 

boundary conditions on top and bottom surfaces of the beam. 

3.4.2 Variation formulation 

In order to derive the equations of motion of the beam, Hamilton’s principle is used: 

  
0

0

T

U V K dT      (3.47) 
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where , ,U V K  are strain energy, work done by external force and kinetic energy of the 

beams. The variation of the strain energy is given by: 

 

 

 0, 0, , 0, ,

0

x x z z xz xz

V

L

b s

x x x xx x x x z z x x x z x

U dV

N u M w M R w Q w w dx

      

      

  

        




 (3.48) 

where the stress resultants , , ,b s

x x x zN M M R  and xQ are defined by: 

    
/2

1 2

/2

, , 1, ,

h

b s

x x x x

h

N M M g g bdz


    (3.49a) 

 
 

 
/2

'

1

/2

5

12 1

h

z z

h

h
R g z bdz








   (3.49b) 

 
 /2

1

/2

5

6

h

x xz

h

hg z
Q bdz



    (3.49c) 

which can be written under the explicit form as follows: 

 0, 0, ,

s

x x xx x x zN Au Bw B Xw      (3.50a) 

 0, 0, ,

b s

x x xx x x zM Bu Dw D Yw      (3.50b) 

 0, 0, ,

s s s s s

x x xx x x zM B u D w H X w      (3.50c) 

 0, 0, ,

s s

z x xx x x zR Xu Yw X Y w      (3.50d) 

  0, ,

s

x x x z xQ A w w     (3.50e) 

where , , , , , ,s s s sA B D B D H A  are the stiffness’s of the beams defined by: 

     
/2

2 2 2

11 1 2 1 1 2 2 2,

/2

, , , , , , 1, , , , , ,

h

s s s s

zz

h

A B B D D H Y Q z g g g g g g g bdz


    (3.51a) 

     
/2

13 1 2 2,

/2

, , 1, ,

h

s

zz

h

X Y X Q z g g g bdz


    (3.51a) 
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2/2

1

/2

5

6

h

s

h

hg
A G bdz



 
  

 
   (3.51b) 

The variation of work done by transverse axial force 0

xN is calculated by: 

 0

0 0, 0

0 0

L L

x xxV q w dx N w w dx        (3.52) 

The variation of kinetic energy is expressed by: 

 

 

  



0 1 0, 2 0 1 0, 2

0 1 0 1

0 0 0 1 0 0, 2 0 1 0, 0 1 0, 0,

0

1 0, 2 0 1 0

5 5

6 6

V

x x x x

V

z z

L

x x x x x

x x x x

K u u w w dV

u g w g u g w g

hG hG
w g w w g w dV

I u u I u w I u I w u J w w

K w I u K w

   

    



    

    

 

    


   
     
   

    

  









, 2 0 0 0

1 0 1 0 2

x x x

z z z z

J I w w

L w w L w w L w w dx

  

  

 

  

  (3.53) 

where the terms of inertia 0 1 2 1 2 1 1, , , , , ,I I I J J K L  and 2L are defined by: 

    
/2

2 2

0 1 2 1 1 2 1 2 1 1 2 2

/2

, , , , , 1, , , , ,

h

h

I I I J K J g g g g g g bdz


    (3.54a) 

  
2/2

1 2 1 1

/2

5 5
, ,

6 6

h

h

h h
L L Gg Gg bdz



  
      
   (3.54b) 

Substituting Eqs. (3.48), (3.52) and (3.53) into Eq. (3.47), and then integrating by part 

the subsequence leads to the following equilibrium equations: 

 0 , 0 0 1 0, 2: x x x xu N I u I w I      (3.55a) 

 
0

0 , , 0, 1 0, 1 0, 0 0 1 , 1: b

x xx x x x xx x xx x x zw M Q q N w I u J w I w K L w           (3.55b) 

 , 2 0 1 0, 2: s

x x x x x xM Q I u K w J       (3.55c) 
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 1 0 2:z z x zw R Q L w L w      (3.55d) 

Substituting Eqs. (3.50) into Eqs. (3.55) leads to: 

 0, 0, , , 0 0 1 0, 2

s

xx xxx x xx z x x xAu Bw B Xw I u I w I         (3.56a) 

 
  0

0, 0, , , 0, , , 0,

1 0, 1 0, 0 0 1 , 1

s s

xxx xxxx x xxx z xx xx x x z xx x xx

x xx x x z

Bu Dw D Yw A w w q N w

I u J w I w K L w

 



       

    
  (3.56b) 

 
 0, 0, , , 0, ,

2 0 1 0, 2

s s s s s

xx xxx x xx z x x x z x

x x

B u D w H X w A w w

I u K w J

 



     

  
  (3.56c) 

  0, 0, , 0, , 1 0 2

s s s

x xx x x z x x z x zXu Yw X Y w A w w L w L w           (3.56d) 

Eqs. (3.56) are equations of motion of the beam from which the bending, buckling and 

vibration responses of the beam can be obtained. 

3.4.3 Navier solution 

The Navier solution procedure is used to determine analytical solutions for simply-

supported functionally graded beams. The solution is assumed to be of the form: 

 0

1

, cos i t

m

m

u x t u xe 




   (3.57a) 

 0

1

, sin i t

m

m

w x t w xe 




  (3.57b) 

 
1

, cos i t

x m

m

x t xe   




   (3.57c) 

 
1

, sin i t

z zm

m

w x t w xe 




  (3.57d) 

where   is the natural frequency, 
2 1i    the imaginary unit, /m L  .The transverse 

load q(x) is also expressed as: 

 
 

1

sinm

m

q x q x





 

(3.58) 
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where 04 /mq q m  ( 1,3,5,...m  , etc.) for uniformly distributed load with density q0. 

Assuming that the beam is subjected to an in-plane compressive load 
0 0

xxN N  . 

Substituting Eqs. (3.57) and (3.58) into Eqs. (3.56), the following characteristic problem 

is obtained: 

 

11 12 13 14 11 12 13 14

12 22 23 24 12 22 23 242

13 23 33 34 13 23 33 34

14 24 34 44 14 24 34 44

0

0

0

m

m m

m
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uk k k k m m m m

wk k k k m m m m q

k k k k m m m m

k k k k m m m m w




       
       

                                  
 

(3.59) 

where, 
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 (3.60) 

3.5 A novel three-variable quasi-3D shear deformation theory 

3.5.1  Displacement, strain, and stresses 

The displacement field of the present theory is given by Rquasi-3D0: 

 
     

         

0 , ,, ,

, ,

b x s x

b s z

u x z t u x zw f z w

w x z t w x w x g z w x

  

  
 (3.61) 

where 
, 01 ; , , ,z b s zg f u w w w  are four variables at the middle-plane of the beam; the 

comma subscript is used to indicate differentiation of variable that follows. 

The non-zeroes strains derived from the displacements in Eq. (3.61) are given by: 
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 (3.62) 

The strains and stresses are related by the following elastic constitutive equation: 
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 (3.63) 

where 
     

 11 13 552 2
, ,

1 1 2 1

E z E z E z
Q Q Q

 

  
  

  
 

Moreover, the equilibrium equations without body forces of static two-dimensional 

elasticity theory are given by: 

 
, ,

, ,

0

0

x x xz z

xz x z z

 

 

 

 
  (3.64) 

The equilibrium equations can be rewritten in terms of stress resultants by integrating 

Eq. (3.64) over the cross-section with boundary conditions 0 at / 2xz z h     and 

( )zz q x   at / 2z h . The resulting equilibrium equations are given by: 

 

,

,

,

0

0

0

x x

x x x

x x

N

M Q

Q q



 

 

 (3.65) 

where the stress resultants are defined as: 
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 (3.66) 

where 
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Substituting Eq. (3.66) into Eq. (3.65) and setting /B A   yield: 

 0, , , , 0s s

xx b xxx s xxx z xBu Bw B w E w       (3.67a) 

  0, , , , , , 0s s s

xx b xxx s xxx z x s x z xBu Dw D w F w A w w       (3.67b) 

  , , 0s

s xx z xxA w w q    (3.67c) 

Subtracting Eq. (3.67a) to Eq. (3.67b) and then integrating the result over the beam 

thickness lead to: 

 
1 , 2 , 3z b xx s xx sw w w w      (3.68) 

where it is noted that the integration constant has been omitted for simplicity and 

coefficients 1 2 3, ,    are defined as: 

 
1 2 3, ,

s s s

s s s s s s s s s

B D D B A

A E F A E F A E F

 
  

  

 
  

     
 (3.69) 

Substituting Eq. (3.68) into Eq. (3.61) leads to a novel three-variables Quasi-3D theory: 

 
     

          
0 , ,

3 1 , 2 ,

, ,

, , 1

b x s x

b s b xx s xx

u x z t u x zw f z w

w x z t w x g w x g z w w  

  

    
 (3.70) 

It is observed from Eq. (3.70) that there are only three unknowns in the quasi-3D beam 

theory. The strains are therefore, determined as follows: 

  

 

0, , ,
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3 , 1 , 2 ,1
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z z s z b xx s xx

xz s x b xxx s xxx

u zw fw

g w g w w

g w w w



   

   

  

   

     

 (3.71) 

3.5.2  Variation formulation 

The strain energy U of system is expressed by: 



67 

 

 

   

  

  

2 22

11 11 3 1 2
0

13 3 1 2

22

55 3 1 2

1

2

1

2

2

1

x x z z xz xz
V

L

,x b,xx s ,xx s b,xx s ,xx

,x b,xx s ,xx s b,xx s ,xx

s ,x b,xxx s ,xxx

dVU

Q u zw fw Q g' w w w

Q g' u zw fw w w w

Q g w w w dV

     

  

  

  



  

      


     

     




 (3.72) 

The work done V by axial compressive load is expressed by: 

  
20

, ,
0

1

2

L

b x s xV N w w dx    (3.73) 

The kinetic energy K is expressed by: 
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(3.74) 

Lagrangian functional is used to derive the governing equations of motion: 

 U V K    (3.75) 

3.6 Solution method 

3.6.1  Ritz method for solution 1 

For quasi-3D2 beam theory given in Eq. (3.56), in order to derive the equations of 

motion, the solution field u0, w, θx, and wz are approximated as the following forms: 
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 (3.76) 
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where   is the natural frequency of free vibration of the beam, 1i    the imaginary 

unit, ( , , and )j j j zju w w denotes the values to be determined, ( )j x  and ( )j x are the 

shape functions. To derive analytical solutions, the shape functions ( )j x  and ( )j x  

are chosen for various boundary conditions (S – S: Simply Supported, C-C: Clamped –

Clamped, and C – F: Clamped – Free beams) as follows: 

    1 1,j jx x x x     (3.77) 

In order to impose the various boundary conditions, the method of Lagrange multipliers 

can be used so that the Lagrangian functional of the problem is rewritten as follows: 

 
* ˆ ( )i iu x     (3.78) 

where i  are the Lagrange multipliers which are the support reactions of the problem, 

 ˆ
iu x  denote the values of prescribed displacement at location 0,x L .  

By substituting Eq. (3.77) into the equations of motion, and using Lagrange’s equations: 

 

* *

0
j j

d

q dt q

 
 

 
 (3.79) 

with jq representing the values of ( , , , , )j j j zj ju w w  that leads to: 
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0

0

0

0

0

 (3.80) 

where the components of the stiffness matrix K and the mass matrix M are given as 

follows: 
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 (3.81) 
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and the components of  
15 25 35 45, , ,andK K K K depend on number of boundary conditions 

and associated prescribed displacements in the Table 3.3.  

Table 3.3 Kinematic BCs of the beams. 

BCs Position   Value 

S-S x=0  0w  

 x=L  0w  

C-F x=0  
,0, 0, 0, 0, 0x zu w w w      

 x=L   

C-C x=0  
,0, 0, 0, 0, 0x zu w w w      

 x=L  
,0, 0, 0, 0, 0x zu w w w      
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3.6.2  Ritz for solution 2 

For three-variable quasi-3D beam theory given in Eq. (3.75), based on Ritz method, the 

displacement field is approximated in the following forms: 

1
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 (3.82) 

where  is the frequency, 2 1i   the imaginary unit; uj, wbj and wsj are unknown and need 

to be determined;  j x  and  j x  are the shape functions in Eqs. (3.77). In order to 

impose the various boundary conditions, the method of Lagrange multipliers can be used 

so that the Lagrangian functional of the problem is Eqs. (3.80). 

By substituting Eq. (3.82) into the equations of motion, and using Lagrange’s equations 

given in Eq. (3.79), that leads to: 
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where 
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11 12 13

ij 0 j ij 1 j,x ij 1 j,x

0 0 0

22 2

ij 0 j 2 ,x j,x 1 2 ,xx j,xx 1 1 j,xx

0 0 0 0

23
0 3 1ij 2 ,x j,x 1 2 2 ,xx j,xx 2 1 j,xx

0 0

, ,

,

,

L L L

i i i

L L L L

i i i i

L L

i i i i

M I dx M I dx M J dx

M I dx I dx dx dx

M J dx dx dx

L L

L L I L

     

       

       

 

   

    

  

   



  

   

   

   

1 3 2j 1 ,xx j

0 0 0

33 2 2
1 3 2ij 2 ,x j,x 2 2 ,xx j,xx 0 3 1 3 2 j 2 ,xx j

0 0 0 0

L L L

i

L L L L

i i i i

dx dx

M K dx dx I dx dx

L L

L L L L L

 

       

 

    







     

  

   

 

with  

   

 

/2
2 2

11
/2

/2

13
/2

/2
2

55
/2

, , '

'

h
s s

h

h
s

h

h
s

h

H G f g Q bdz

Y Q fg z bdz

Z Q g bdz



















 

    
/2

2 2 2

0 1 2 1 2 2 1 2

/2

, , , , , , , 1, , , , , , ,

h

h

I I I J J K L L z z z f zf f g g bdz


   

The buckling and natural frequencies of the FG beams will be determined by solving Eq. 

(3.83). 
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3.7 Numerical results and discussion 

Several numerical examples are analyzed in this section to verify the accuracy of present 

study and investigate the deflections, stresses, natural frequencies and critical buckling 

loads of FG sandwich beams. Unless mentioned otherwise, three types of FG beams 

(Types A, B and C) are constituted by a mixture of isotropic ceramic (Al2O3) and metal 

(Al). 

The material properties of Aluminum (Al) are 370 , 0.3, 2707 /E GPa kg m     and 

those of Alumina ( 2 3Al O ) are 3380 , 0.3, 3960 /E GPa kg m    .  

 

(a) Type A: FG beams  

 

(b) Type B: Sandwich beams with FG-faces, Ceramic-core 

 

(c) Type C: Sandwich beams with FG-core, homogeneous-faces  

Figure 3.1  Geometry of FG sandwich beams. 
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Unless mentioned otherwise, three types of FG beams (Types A, B and C) are constituted 

by a mixture of isotropic ceramic (Al2O3) and metal (Al).  

 Hard core: Homogeneous core with  2 3Al O , ,b b bE    and FG faces with top and 

bottom surfaces made of  Al , ,t t tE   . 

 Soft core: Homogeneous core with  Al , ,b b bE    and FG faces with top and bottom 

surfaces made of  2 3Al O , ,t t tE   . 

The material property distribution of FG sandwich beams through the beam height is 

given by the power-law form: 

( ) ( ) ( )c m c mP z P P V z P    (3.85) 

where cP and mP are Young’s moduli ( E ), Poisson’s ratio ( ), mass density (  ) of 

ceramic and metal materials, respectively. ( )cV z  is the volume fraction of ceramic 

materials given in Eqs (2.2) - (2.4). 

Moreover, for convenience, the following non-dimensional parameters are used 
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 (3.86) 

where ,m mE   are Young’s modulus and Poisson’s ratio of metal, respectively. 

Example 1: Vibration and buckling responses of RHSBT1, HSBT2 and quasi-3D2 

FG beams (Type A, S-S) 

For verification purpose, Tables 3.5 and 3.6 present the comparisons of the non-

dimensional fundamental frequencies and critical buckling loads of 2 3Al/Al O FG beams 

with S-S BCs (Type A), various values of the power-law index p and two span-to-height 

ratio L/h = 5, 20 are considered. It is noted that the present numerical results are 

calculated by the following beam models: Those of HSBT2 and Quasi-3D2 with 
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 with r=1. The obtained results 

are compared to those from the HSBT [5] and the third-order shear deformation beam 

theory (TSBT) [117].  

It is seen that the solutions obtained from the proposed theory are in well agreements 

with those obtained from previous results for both deep and thin beams. In addition, the 

fundamental frequencies and critical buckling loads of the FG beams calculated from 

quasi-3D2 are smaller than the HSBTs. It shows that the transverse normal effect in 

quasi-3D makes the beam softer.  

On the other hand, in Tables 3.4-3.5, the results of Rquasi-3D03V show that the effects 

on FG beams are reasonable but it is not as expected. So the thesis will not continue to 

develop for Rquasi-3D03V. 

Table 3.4 Non-dimensional fundamental frequency ( ) of FG beams with S-S 

boundary conditions (Type A). 

L/h Theory 
p 

0 0.5 1 2 5 10 

5 HSBT1 [5] 5.1528 4.4102 3.9904 3.6264 3.4011 3.2816 

TSBT [117] 5.1527  4.4107 3.9904 3.6264 3.4012 3.2816 

HSBT2 5.1527   4.4088 3.9904 3.6264 3.4012 3.2817 
RHSBT1 5.3924     4.5900     4.1462     3.7777     3.5933     3.4907 

Quasi-3D2 4.4870  3.7518 3.4345 3.2383 3.1657 3.0680 

 Rquasi-3D03V 3.7261     3.1642     2.9726     2.9064     2.9318     2.7975 

20 HSBT[5] 5.4603 4.6506 4.2051 3.8361 3.6485 3.5390 

TSBT [117] 5.4603  4.6511 4.2051 3.8361 3.6485 3.5390 

HSBT2  5.4603   4.6492 4.2050 3.8361 3.6485 3.5391 

RHSBT1 5.4659     4.6547     4.2087     3.8397     3.6533     3.5442 

Quasi-3D2 3.5424  2.9693 2.7368 2.5891  2.4650 2.3598 

 Rquasi-3D03V  3.7385     3.1794     2.9894     2.9217     2.9399     2.8021 

 3V: A three-variable quasi-3D 
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Table 3.5 Non-dimensional critical buckling load ( crN ) of FG beams with S-S 

boundary conditions (Type A). 

L/h Theory 
p 

0 0.5 1 2 5 10 

5 HSBT1 [5] 48.8402   32.0011    24.6893   19.1581    15.7373    14.1456 

TSBT [117] 48.8401  32.0094 24.6911 19.1605 15.7400 14.1468 

HSBT2 48.8400    31.9816    24.6891    19.1583    15.7386    14.1466 

RHSBT1 53.5265    34.6904    26.6838    20.8259    17.6121    16.0426 

Quasi-3D2 36.2031    22.5337    17.8194    14.9778    13.4697    12.2279 

 Rquasi-3D03V 24.3760    15.6845    13.0268    11.6938    11.1452     9.8261 

20 HSBT1 [5] 53.2546    34.5401    26.5696    20.7249    17.4914    15.9176 

HSBT2 53.2545    34.5188    26.5694    20.7249    17.4917    15.9181 

RHSBT1 53.3841    34.6132    26.6240    20.7710    17.5447    15.9727 

Quasi-3D2 48.4228    31.1342    24.1390    19.1794    16.5068    15.0284 

 Rquasi-3D03V 24.8806    16.0882    13.3807    11.9786    11.3164     9.9445 
 3V: The three-variable quasi-3D 

Example 2: Bending, buckling and vibration responses of RHSBT1 FG beams 

(Type B, S-S) 

For verification purpose, Tables 3.6–3.9 present the comparisons of the non-dimensional 

fundamental frequencies and critical buckling loads of Al/Al2O3 sandwich beams with 

homogeneous hardcore and soft core.  

For verification purpose further and investigate effects of the thickness ratio of layer and 

span-to-thickness ratio on the bending, buckling and vibration behaviors of FG sandwich 

beams, Tables 3.6–3.9 present the comparisons of the non-dimensional fundamental 

frequencies and critical buckling loads of Al/Al2O3 sandwich beams with homogeneous 

hardcore and soft core. The results are estimated for six schemes of thickness ratio of 

layers, various values of the power-law index p and the two span-to-height ratio (L/h= 5 

and 20), and compared to those obtained by Vo et al. [131]  based on the TSBT. It is 

seen from these tables that there are no significant differences between the present 

solutions and those of [131] for both buckling and vibration behaviors.  

Moreover, the effects of the power-law index and thickness ratio of layers on the 

fundamental frequency and critical buckling load are also displayed in Figures 3.2 and 

3.3. These figures show that the fundamental frequency and critical buckling load 
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decrease with an increase of the power-law index for FG sandwich beams with 

homogeneous hardcore, and inversely they increase with p for homogeneous soft core. 

  

(a) Homogeneous hard core (b) Homogeneous soft core 

Figure 3.2 Effect of the power-law index p on the non-dimensional fundamental frequency 

( ) of FG sandwich beams (Type B, L/h=5). 

 

  

(a) Homogeneous hard core (b) Homogeneous soft core 

Figure 3.3 Effect of the power-law index p on the non-dimensional critical buckling load 

 crN  of FG sandwich beams (Type B, L/h=5). 
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That can be explained by the fact that the higher value of p corresponds to higher portion 

of metal phase, and thus makes the beams become softer. It can be observed from these 

figures that the lowest and highest values of the fundamental frequency and critical 

buckling load correspond to the (1-0-1) and (1-2-1) sandwich beams with homogeneous 

hardcore, and inversely for homogeneous soft core. 

Table 3.6 Non-dimensional fundamental frequency   of Al/Al2O3 sandwich beams 

(Type B, Homogeneous hardcore). 

L/h p Theory 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

5 0 RHSBT1 5.1528 5.1528 5.1528 5.1528 5.1528 5.1528 

  Vo et al [131]  5.1528 5.1528 5.1528 5.1528 5.1528 5.1528 

 0.5 RHSBT1 4.1254 4.2340 4.2943 4.3294 4.4045 4.4791 

  Vo et al [131]  4.1268 4.2351 4.2945 4.3303 4.4051 4.4798 

 1 RHSBT1 3.5735 3.7298 3.8206 3.8756 3.9911 4.1105 

  Vo et al [131]  3.5735 3.7298 3.8187 3.8755 3.9896 4.1105 

 5 RHSBT1 2.7448 2.8440 2.9789 3.0181 3.1965 3.3771 

  Vo et al [131]  2.7446 2.8439 2.9746 3.0181 3.1928 3.3771 

 10 RHSBT1 2.6934 2.7356 2.8715 2.8809 3.0629 3.2357 

  Vo et al [131]  2.6932 2.7355 2.8669 2.8808 3.0588 3.2356 

20 0 RHSBT1 5.4603 5.4603 5.4603 5.4603 5.4603 5.4603 

  Vo et al [131]  5.4603 5.4603 5.4603 5.4603 5.4603 5.4603 

 0.5 RHSBT1 4.3132 4.4278 4.4960 4.5315 4.6158 4.6972 

  Vo et al [131]  4.3148 4.4290 4.4970 4.5324 4.6170 4.6979 

 1 RHSBT1 3.7147 3.8768 3.9775 4.0328 4.1603 4.2889 

  Vo et al [131]  3.7147 3.8768 3.9774 4.0328 4.1602 4.2889 

 5 RHSBT1 2.8440 2.9311 3.0776 3.1111 3.3030 3.4921 

  Vo et al [131]  2.8439 2.9310 3.0773 3.1111 3.3028 3.4921 

 10 RHSBT1 2.8042 2.8188 2.9665 2.9662 3.1616 3.3406 

  Vo et al [131]  2.8041 2.8188 2.9662 2.9662 3.1613 3.3406 
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Table 3.7 Non-dimensional fundamental frequency   of Al/Al2O3 sandwich 

beams (Type B, Homogeneous soft core). 

L/h p Theory 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

5 0 RHSBT1 2.6773  2.6773 2.6773 2.6773 2.6773 2.6773 

  Vo et al [131]  2.6773  2.6773 2.6773 2.6773 2.6773 2.6773 

 0.5 RHSBT1 4.4437  4.3052 4.1998 4.1844 4.0549 3.9926 

  Vo et al [131]  4.4427  4.3046 4.1960 4.1839 4.0504 3.9921 

 1 RHSBT1 4.8519  4.7168 4.5947 4.5848 4.4305 4.3656 

  Vo et al [131]  4.8525  4.7178 4.5916 4.5858 4.4270 4.3663 

 5 RHSBT1 5.1876  5.1592 5.0422 5.0687 4.9070 4.8547 

  Vo et al [131]  5.1880  5.1603 5.0399 5.0703 4.9038 4.8564 

 10 RHSBT1 5.1846  5.1957 5.0885 5.1286 4.9730 4.9307 

  Vo et al [131]  5.1848  5.1966 5.0866 5.1301 4.9700 4.9326 

20 0 RHSBT1 2.8371  2.8371 2.8371 2.8371 2.8371 2.8371 

  Vo et al [131]  2.8371  2.8371 2.8371 2.8371 2.8371 2.8371 

 0.5 RHSBT1 4.8594  4.7473 4.6065 4.6305 4.4630 4.4168 

  Vo et al [131]  4.8579  4.7460 4.6050 4.6294 4.4611 4.4160 

 1 RHSBT1 5.2990 5.2216 5.0544 5.1159 4.9124 4.8937 

  Vo et al [131]  5.2990  5.2217 5.0541 5.1160 4.9121 4.8938 

 5 RHSBT1 5.5645  5.6381 5.4836 5.6241 5.4169 5.4841 

  Vo et al [131]  5.5645  5.6382 5.4834 5.6242 5.4166 5.4843 

 10 RHSBT1 5.5302  5.6451 5.5074 5.6620 5.4670 5.5573 

  Vo et al [131]  5.5302  5.6452 5.5073 5.6621 5.4667 5.5575 
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Table 3.8 Non-dimensional critical buckling load  crN  of Al/Al2O3 sandwich 

beams (Type B, Homogeneous hardcore). 

L/h p Theory 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

5 0 RHSBT1 48.5960  48.5960 48.5960 48.5960 48.5960 48.5960 

  Vo et al [131]  48.5960  48.5960 48.5960 48.5960 48.5960 48.5960 

 0.5 RHSBT1 27.8374  30.0141 31.0576 31.8649 33.2339 34.7551 

  Vo et al [131]  27.8574  30.0301 31.0728 31.8784 33.2536 34.7653 

 1 RHSBT1 19.6531  22.2113 23.5246 24.5598 26.3609 28.4444 

  Vo et al [131]  19.6525  22.2108 23.5246 24.5596 26.3611 28.4447 

 5 RHSBT1 10.1473  11.6685 13.0272 13.7218 15.7307 18.0914 

  Vo et al [131]  10.1460  11.6676 13.0270 13.7212 15.7307 18.0914 

 10 RHSBT1 9.4526  10.5356 11.8372 12.2611 14.1995 16.3787 

  Vo et al [131]  9.4515  10.5348 11.8370 12.2605 14.1995 16.3783 

20 0 RHSBT1 53.2364  53.2364 53.2364 53.2364 53.2364 53.2364 

  Vo et al [131]  53.2364  53.2364 53.2364 53.2364 53.2364 53.2364 

 0.5 RHSBT1 29.6965  32.0367 33.2217 34.0722 35.6202 37.3054 

  Vo et al [131]  29.7175  32.2629 33.2376 34.0862 35.6405 37.3159 

 1 RHSBT1 20.7213  23.4212 24.8793 25.9588 27.9537 30.2307 

  Vo et al [131]  20.7212  23.4211 24.8796 25.9588 27.9540 30.2307 

 5 RHSBT1 10.6175  12.0885 13.5519 14.2285 16.3829 18.8874 

  Vo et al [131]  10.6171  12.0883 13.5523 14.2284 16.3834 18.8874 

 10 RHSBT1 9.9849  10.9074 12.3080 12.6819 14.7520 17.0445 

  Vo et al [131]  9.9847  10.9075 12.3084 12.6819 14.7525 17.0443 
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Table 3.9 Non-dimensional critical buckling load  crN  of Al/Al2O3 sandwich beams 

(Type B, Homogeneous soft core). 

L/h p Theory 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

5 0 RHSBT1 8.9519 8.9519 8.9519 8.9519 8.9519 8.9519 

  Vo et al [131]  8.9519 8.9519 8.9519 8.9519 8.9519 8.9519 

 0.5 RHSBT1 28.4414 25.9582 24.5519 24.0603 22.4005 21.3879 

  Vo et al [131]  28.4280 25.9503 24.5423 24.0540 22.3861 21.3821 

 1 RHSBT1 36.2005 32.8830 30.9224 30.2305 27.8779 26.4709 

  Vo et al [131]  36.2103 32.8974 30.9311 30.2449 27.8873 26.4801 

 5 RHSBT1 46.6437 43.5149 40.9711 40.2969 37.0187 35.0091 

  Vo et al [131]  46.6504 43.5338 40.9813 40.3235 37.0356 35.0357 

 10 RHSBT1 47.7789 45.0980 42.5918 42.0433 38.6854 36.6575 

  Vo et al [131]  47.7825 45.1141 42.6000 42.0693 38.7018 36.6874 

20 0 RHSBT1 9.8067 9.8067 9.8067 9.8067 9.8067 9.8067 

  Vo et al [131]  9.8067 9.8067 9.8067 9.8067 9.8067 9.8067 

 0.5 RHSBT1 33.2392 30.8707 28.8664 28.8300 26.5315 25.6157 

  Vo et al [131]  33.2187 30.8546 28.8514 28.8167 26.5120 25.6086 

 1 RHSBT1 42.1802 39.4111 36.5663 36.8431 33.5141 32.5794 

  Vo et al [131]  42.1810 39.4124 36.5675 36.8445 33.5153 32.5803 

 5 RHSBT1 52.3646 50.7591 47.3042 48.5138 44.0822 43.7611 

  Vo et al [131]  52.3655 50.7608 47.3056 48.5163 44.0843 43.7637 

 10 RHSBT1 53.0327 51.9791 48.6919 50.0879 45.6712 45.6009 

  Vo et al [131]  53.0331 51.9804 48.6930 50.0902 45.6732 45.6040 

Furthermore, in order to estimate the effects of the power-law index, thickness ratio of 

layers on the static responses of Al/Al2O3 sandwich beams with homogeneous hardcore 

and soft core, Tables 3.10–3.12 introduce the non-dimensional mid-span displacement, 

axial and transverse shear stresses of Al/Al2O3 sandwich beams subjected to uniformly 

distributed load. The results are also plotted in Figures 3.4–3.6 with an increase of the 

power-law index, the deflection increases for homogeneous hardcore and decreases for 

homogeneous soft core. Figure 3.5a and Table 3.11 show that the variation of axial 

stresses of FG sandwich beams with homogeneous hardcore is linear for p=0 and 

nonlinear in the face sheets for p>0. The maximum values of compressive and tensile 

stresses are located at the interfaces of faces and core for p>0. Figure 3.5b shows that 

the maximum axial stress tends to decrease with an increase of the power-law index.  
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Figure 3.6 presents the variations of non-dimensional transverse shear stress through the 

depth of (1-2-1) FG sandwich beams for various values of the power law index. 

Obviously, for homogeneous hardcore, the maximum stresses are located at the mid-

plane of the beam while for homogeneous soft core, they reside in the faces of FG 

sandwich beams. 

Table 3.10 Non-dimensional mid-span transverse displacement  w  of Al/Al2O3 

sandwich beams (Type B, Homogeneous hardcore and soft core). 

Core L/h p 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

Hard core 5 0 0.2026 0.2026 0.2026 0.2026 0.2026 0.2026 

  0.5 0.3539  0.3282 0.3172 0.3092 0.2964 0.2834 

  1 0.5014  0.4437 0.4189 0.4012 0.3738 0.3464 

  5 0.9714  0.8450 0.7568 0.7185 0.6267 0.5449 

  10 1.0425  0.9359 0.8329 0.8042 0.6943 0.6019 

 20 0 0.1854 0.1854 0.1854 0.1854 0.1854 0.1854 

  0.5 0.3323  0.3080 0.2970 0.2896 0.2770 0.2645 

  1 0.4763  0.4214 0.3967 0.3802 0.3530 0.3264 

  5 0.9295 0.8164  0.7282 0.6936 0.6024 0.5225 

  10 0.9884  0.9048 0.8018 0.7782 0.6690 0.5790 

Soft core 5 0 1.0997 1.0997 1.0997 1.0997 1.0997 1.0997 

  0.5 0.3456  0.3785 0.4003 0.4083 0.4386 0.4593 

  1 0.2715  0.2987 0.3178 0.3248 0.3523 0.3708 

  5 0.2109  0.2259 0.2400 0.2437 0.2654 0.2803 

  10 0.2060  0.2180 0.2309 0.2337 0.2540 0.2677 

 20 0 1.0062 1.0062 1.0062 1.0062 1.0062 1.0062 

  0.5 0.2968  0.3196 0.3418 0.3422 0.3719 0.3852 

  1 0.2339  0.2503 0.2698 0.2678 0.2944 0.3028 

  5 0.1884  0.1944 0.2086 0.2034 0.2238 0.2254 

  10 0.1861  0.1898 0.2026 0.1970 0.2163 0.2160 
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Table 3.11 Non-dimensional axial stress   / 2xx h  of Al/Al2O3 sandwich beams 

(Type B, Homogeneous hardcore and soft core). 

Core L/h p 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

Hard core 5 0 3.8022 3.8022 3.8022 3.8022 3.8022 3.8022 

  0.5 1.2547  1.1632 1.0699 1.0939 1.0036 0.9995 

  1 1.7967  1.5898 1.3885 1.4349 1.2475 1.2330 

  5 3.5001  3.0730 2.4070 2.6124 2.0195 1.9706 

  10 3.7235  3.4044 2.6296 2.9294 2.2200 2.1827 

 20 0 15.013  15.013 15.013 15.013 15.013 15.013 

  0.5 4.9665  4.6036 4.2305 4.3281 3.9673 3.9520 

  1 7.1229 6.3018  5.4960 5.6850 4.9364 4.8801 

  5 13.9065  12.2220 9.5507 10.3835 8.0109 7.8194 

  10 14.7788  13.5456 10.4356 11.6513 8.8104 8.6665 

Soft core 5 0 3.8022  3.8022 3.8022 3.8022 3.8022 3.8022 

  0.5 6.1022  6.5726 7.6712 7.0355 8.3738 7.9087 

  1 4.8124  5.1557 6.0989 5.5150 6.7123 6.2280 

  5 3.8727  4.0058 4.6474 4.1974 5.0955 4.6539 

  10 3.8209  3.9096 4.4773 4.0649 4.8950 4.4686 

 20 0 15.013  15.013 15.013 15.013 15.013 15.013 

  0.5 23.9372  25.7407 30.1970 27.5464 32.9517 31.0018 

  1 18.8683  20.1527 23.9954 21.5297 26.3863 24.3265 

  5 15.2386  15.6797 18.3034 16.3681 20.0297 18.0929 

  10 15.0579  15.3246 17.6441 15.8662 19.2507 17.3701 
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Table 3.12 Non-dimensional transverse shear stress   0xz of Al/Al2O3 sandwich 

beams (Type B, Homogeneous hardcore and soft core). 

Core L/h p 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 

Hard core 5 0 0.7350 0.7350 0.7350 0.7350 0.7350 0.7350 

  0.5 0.8959  0.8371 0.8354 0.8087 0.8032 0.7830 

  1 1.0349  0.9139 0.9106 0.8602 0.8496 0.8141 

  5 1.7725  1.1854 1.1755 1.0133 0.9873 0.8940 

  10 2.3128  1.3065 1.2888 1.0670 1.0347 0.9165 

 20 0 0.7470 0.7470 0.7470 0.7470 0.7470 0.7470 

  0.5 0.9070  0.8476 0.8460 0.8189 0.8134 0.7931 

  1 1.0466  0.9241 0.9209 0.8699 0.8594 0.8235 

  5 1.7927  1.1976 1.1877 1.0237 0.9972 0.9030 

  10 2.3411 1.3196  1.3023 1.0779 1.0450 0.9258 

Soft core 5 0 0.7350 0.7350 0.7350 0.7350 0.7350 0.7350 

  0.5 0.3923  0.4762 0.4756 0.5370 0.5454 0.6079 

  1 0.3006  0.3888 0.3885 0.4614 0.4725 0.5570 

  5 0.1769  0.2484 0.2507 0.3204 0.3345 0.4422 

  10 0.1564  0.2216 0.2250 0.2899 0.3045 0.4121 

 20 0 0.7470 0.7470 0.7470 0.7470 0.7470 0.7470 

  0.5 0.4009  0.4870 0.4859 0.5492 0.5577 0.6214 

  1 0.3069  0.3976 0.3968 0.4720 0.4830 0.5697 

  5 0.1802  0.2536 0.2556 0.3276 0.3416 0.4524 

  10 0.1591  0.2261 0.2292 0.2963 0.3108 0.4216 
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(a) Hard core (b) Soft core 

Figure 3.5 Distribution of non-dimensional axial stress  xx through the height of (1-2-1) FG 

sandwich beams (Type B, L/h=10). 

  

(a)  Hard core (b)  Soft core 

Figure 3.4 Effect of the power-law index p on the non-dimensional mid-span transverse 

displacement  w  of FG sandwich beams (Type B, L/h=10). 
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(a) Hard core (b) Soft core 

Figure 3.6 Distribution of non-dimensional transverse shear stress  xz  through the height of  

(1-2-1) FG sandwich beams (Type B, L/h=10). 

Example 3: Buckling and vibration responses of Quasi-3D0 FG beams (Type B, C) 

In order to evaluate the effect of transverse shear strain on behaviors of FG sandwich 

beams, a quasi-3D0 beam with the shear function  f z  given in Nguyen et al. [5] is 

used  
3

1

3

16
cot

15

h z
f z

z h

  
  

 
. Tables 3.4 and 3.5 present the comparisons of the non-

dimensional fundamental frequencies and critical buckling loads of 2 3Al/Al O  FG beams 

with S-S BCs (Type A), various values of the power-law index p and two span-to-height 

ratio L/h = 5, 20 are considered. It is noted that the present numerical results are 

calculated by using the Ritz method with polynomial shape functions and for the 

different beam models: HSBT2, quasi-3D2. 
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C-F C-F 

 
 

C-C C-C 

Figure 3.7 Convergence of the non-dimensional fundamental frequency ( ) and critical 

buckling load ( crN ) of FG sandwich beams (Type B, p = 1, L/h = 5). 
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Firstly, the convergence of the present polynomial series solution is studied. Quasi-3D0 

FG sandwich beams (Type B, 1-2-1) with the span-to-height ratio (L/h=5) and the power-

law index (p=1) are considered. This is carried out for the fundamental frequency and 

critical buckling loads with three boundary conditions. The present results are compared 

with those based on a polynomial quasi-3D theory [135] in Figure 3.7. It can be seen that 

the solution of S-S boundary condition converges more quickly than C-F and C-C ones, 

and that the number of terms N=14 is sufficient to obtain an accurate solution. This 

number will be therefore used throughout the numerical examples. 

Table 3.13 Non-dimensional fundamental frequency ( ) of FG sandwich beams  

(Type B, S-S, L/h=5). 

p  Theory  1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 

0 Quasi-3D0 5.1620  5.1620 5.1620 5.1620 5.1620 5.1620 5.1620 

 HSBT [5] 5.1528  5.1528 5.1528 5.1528 5.1528 5.1528 - 

 TSBT [131] 5.1528  5.1528 5.1528 5.1528 5.1528 5.1528 5.1528 

 Quasi-3D [135]  5.1618  5.1618 5.1618 5.1618 5.1618 5.1618 5.1618 

0.5 Quasi-3D0 4.1329  4.2417 4.3037 4.3373 4.4143 4.4874 4.8504 

 HSBT [5] 4.1254  4.2340 4.2943 4.3294 4.4045 4.4791 - 

 TSBT [131] 4.1268  4.2351 4.2945 4.3303 4.4051 4.4798 4.8422 

 Quasi-3D [135]  4.1344  4.2429 4.3041 4.3383 4.4146 4.4881 4.8511 

1 Quasi-3D0   3.5804  3.7369 3.8318 3.8830 4.0018 4.1185 4.6883 

 HSBT [5]  3.5736  3.7298 3.8206 3.8756 3.9911 4.1105 - 

 TSBT [131] 3.5735  3.7298 3.8187 3.8755 3.9896 4.1105 4.6795 

 Quasi-3D [135] 3.5803  3.7369 3.8301 3.8830 4.0005 4.1185 4.6884 

2 Quasi-3D0  3.0739  3.2428 3.3685 3.4258 3.5848 3.7410 4.5229 

 HSBT [5]  3.0682  3.2366 3.3546 3.4190 3.5719 3.7334 - 

 TSBT [131] 3.0680  3.2365 3.3514 3.4190 3.5692 3.7334 4.5142 

 Quasi-3D [135] 3.0737  3.2427 3.3656 3.4257 3.5825 3.7410 4.5231 

5 Quasi-3D0   2.7497  2.8491 2.9955 3.0239 3.2122 3.3840 4.3587 

 HSBT [5] 2.7450  2.8441 2.9790 3.0182 3.1966 3.3771 - 

 TSBT [131] 2.7446  2.8439 2.9746 3.0181 3.1928 3.3771 4.3501 

 Quasi-3D [135] 2.7493  2.8489 2.9912 3.0238 3.2087 3.3840 4.3589 

10 Quasi-3D0   2.6982  2.7402 2.8886 2.8862 3.0797 3.2423 4.2862 

 HSBT [5] 2.6936  2.7357 2.8716 2.8810 3.0630 3.2357 - 

 TSBT [131] 2.6932  2.7355 2.8669 2.8808 3.0588 3.2356 4.2776 

 Quasi-3D [135] 2.6978  2.7400 2.8839 2.8860 3.0757 3.2422 4.2864 
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In the next research, Tables 3.14-3.24 presents the comparison of the natural frequencies 

and critical buckling loads of FG sandwich beams of type B with three boundary 

conditions. They are calculated for various values of the power-law index, seven values 

of skin-core-skin thickness ratios and compared with the solutions obtained from HSBT 

[5], TSDT [131] and quasi-3D theory [135]. It is seen that the solutions obtained from 

the proposed theory are in excellent agreement with those obtained from [135]. Besides, 

various differences between the HSDTs and the present theory appeared for thick FG 

sandwich beams. 

  
  

Figure 3.8 Effects of the span-to-depth ratio L/h on the non-dimensional fundamental 

frequency ( ) and critical buckling load ( crN ) of FG sandwich beams (Type B, p= 5). 

Furthermore, it can be seen from the tables that the results decrease with the increase of 

the power-law index. The lowest and highest values of natural frequency and critical 

buckling load correspond to the (1-0-1) and (1-8-1) sandwich beams. This is because 

these beams correspond to the lowest and highest volume fractions of the ceramic phase. 

The effect of the span-to-height ratio on the fundamental frequencies and critical 

buckling loads of S-S FG sandwich beams with p = 5 is plotted in Figure 3.8. 
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Table 3.14 Non-dimensional fundamental frequency ( ) of FG sandwich beams  

(Type B, S-S, L/h=20). 

p Theory  1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 

0 Quasi-3D0  5.4611 5.4611 5.4611 5.4611 5.4611 5.4611 5.4611 

 HSBT [5] 5.4603 5.4603 5.4603 5.4603 5.4603 5.4603 - 

 TSBT [131] 5.4603 5.4603 5.4603 5.4603 5.4603 5.4603 5.4603 

 Quasi-3D [135]  5.4610 5.4610 5.4610 5.4610 5.4610 5.4610 5.4610 

0.5 Quasi-3D0   4.3137  4.4284 4.4983 4.5321 4.6182 4.6979 5.1067 

 HSBT [5] 4.3132  4.4278 4.4960 4.5315 4.6158 4.6972 - 

 TSBT [131] 4.3148  4.4290 4.4970 4.5324 4.6170 4.6979 5.1067 

 Quasi-3D [135]  4.3153  4.4296 4.4992 4.5330 4.6190 4.6985 5.1073 

1 Quasi-3D0  3.7153  3.8774 3.9824 4.0334 4.1643 4.2896 4.9240 

 HSBT [5]  3.7147  3.8768 3.9775 4.0328 4.1603 4.2889 - 

 TSBT [131] 3.7147  3.8768 3.9774 4.0328 4.1602 4.2889 4.9233 

 Quasi-3D [135] 3.7152  3.8773 3.9822 4.0333 4.1641 4.2895 4.9239 

2 Quasi-3D0   3.1769  3.3471 3.4842 3.5395 3.7121 3.8775 4.7389 

 HSBT [5]  3.1764  3.3465 3.4756 3.5389 3.7051 3.8769 - 

 TSBT [131] 3.1764  3.3465 3.4754 3.5389 3.7049 3.8769 4.7382 

 Quasi-3D [135] 3.1768  3.3469 3.4838 3.5394 3.7118 3.8774 4.7388 

5 Quasi-3D0   2.8444  2.9315 3.0899 3.1116 3.3138 3.4927 4.5561 

 HSBT [5] 2.8440  2.9311 3.0776 3.1111 3.3030 3.4921 - 

 TSBT [131] 2.8439  2.9310 3.0773 3.1111 3.3028 3.4921 4.5554 

 Quasi-3D [135] 2.8443  2.9314 3.0891 3.1115 3.3133 3.4926 4.5560 

10 Quasi-3D0   2.8046  2.8192 2.9797 2.9666 3.1739 3.3412 4.4756 

 HSBT [5] 2.8042  2.8188 2.9665 2.9662 3.1616 3.3406 - 

 TSBT [131] 2.8041  2.8188 2.9662 2.9662 3.1613 3.3406 4.4749 

 Quasi-3D [135] 2.8045  2.8191 2.9786 2.9665 3.1732 3.3411 4.4755 
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Table 3.15 Non-dimensional fundamental frequency ( ) of FG sandwich beams  

(Type B, C-F, L/h=5). 

p Theory  1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 

0 Quasi-3D0   1.9053  1.9053 1.9053 1.9053 1.9053 1.9053 1.9053 

 HSBT [5] 1.8953  1.8953 1.8953 1.8953 1.8953 1.8953 - 

 TSBT [131] 1.8952 1.8952 1.8952 1.8952 1.8952 1.8952 1.8952 

 Quasi-3D [135]  1.9055 1.9055 1.9055 1.9055 1.9055 1.9055 1.9055 

0.5 Quasi-3D0   1.5142 1.5543 1.5779 1.5901 1.6193 1.6467 1.7853 

 HSBT [5] 1.5064  1.5463 1.5693 1.5819 1.6104 1.6383 - 

 TSBT [131] 1.5069  1.5466 1.5696 1.5821 1.6108 1.6384 1.7764 

 Quasi-3D [135]  1.5152  1.5551 1.5787 1.5908 1.6200 1.6474 1.7859 

1 Quasi-3D0   1.3077  1.3648 1.4005 1.4189 1.4636 1.5071 1.7232 

 HSBT [5]  1.3008  1.3576 1.3919 1.4115 1.4550 1.4993 - 

 TSBT [131] 1.3007  1.3575 1.3918 1.4115 1.4549 1.4992 1.7145 

 Quasi-3D [135] 1.3081  1.3652 1.4008 1.4193 1.4640 1.5075 1.7235 

2 Quasi-3D0   1.1204  1.1810 1.2278 1.2483 1.3074 1.3653 1.6601 

 HSBT [5]  1.1143  1.1747 1.2189 1.2416 1.2987 1.3582 - 

 TSBT [131] 1.1143  1.1746 1.2188 1.2416 1.2986 1.3582 1.6518 

 Quasi-3D [135] 1.1208  1.1815 1.2282 1.2488 1.3079 1.3658 1.6605 

5 Quasi-3D0   1.0028  1.0361 1.0902 1.0997 1.1691 1.2323 1.5976 

 HSBT [5] 0.9974  1.0304 1.0807 1.0936 1.1598 1.2258 - 

 TSBT [131] 0.9973  1.0303 1.0806 1.0935 1.1597 1.2257 1.5897 

 Quasi-3D [135] 1.0030  1.0365 1.0904 1.1002 1.1695 1.2329 1.5981 

10 Quasi-3D0   0.9865  0.9965 1.0513 1.0491 1.1203 1.1798 1.5701 

 HSBT [5] 0.9813  0.9910 1.0417 1.0432 1.1106 1.1734 - 

 TSBT [131] 0.9812  0.9909 1.0416 1.0431 1.1106 1.1734 1.5624 

 Quasi-3D [135] 0.9867  0.9969 1.0514 1.0495 1.1206 1.1804 1.5706 
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Table 3.16 Non-dimensional fundamental frequency ( ) of FG sandwich beams  

(Type B, C-F, L/h=20). 

p Theory  1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 

0 Quasi-3D0   1.9530 1.9530 1.9530 1.9530 1.9530 1.9530 1.9530 

 HSBT [5] 1.9496  1.9496 1.9496 1.9496 1.9496 1.9496 - 

 TSBT [131] 1.9496  1.9496 1.9496 1.9496 1.9496 1.9496 1.9496 

 Quasi-3D [135]  1.9527  1.9527 1.9527 1.9527 1.9527 1.9527 1.9527 

0.5 Quasi-3D0   1.5422  1.5832 1.6081 1.6203 1.6511 1.6796 1.8260 

 HSBT [5] 1.5392  1.5801 1.6045 1.6171 1.6473 1.6764 - 

 TSBT [131] 1.5397  1.5805 1.6048 1.6175 1.6477 1.6766 1.8229 

 Quasi-3D [135]  1.5423  1.5831 1.6081 1.6201 1.6509 1.6794 1.8259 

1 Quasi-3D0   1.3281  1.3860 1.4235 1.4418 1.4886 1.5335 1.7606 

 HSBT [5]  1.3253  1.3831 1.4191 1.4388 1.4844 1.5304 - 

 TSBT [131] 1.3253  1.3831 1.4191 1.4388 1.4844 1.5304 1.7573 

 Quasi-3D [135] 1.3275  1.3855 1.4230 1.4413 1.4881 1.5329 1.7602 

2 Quasi-3D0   1.1355  1.1964 1.2453 1.2651 1.3268 1.3860 1.6943 

 HSBT [5]  1.1330  1.1937 1.2398 1.2623 1.3217 1.3831 - 

 TSBT [131] 1.1330  1.1937 1.2398 1.2623 1.3217 1.3831 1.6911 

 Quasi-3D [135] 1.1351  1.1958 1.2447 1.2646 1.3262 1.3855 1.6938 

5 Quasi-3D0   1.0167  1.0478 1.1042 1.1122 1.1843 1.2484 1.6289 

 HSBT [5] 1.0145  1.0454 1.0977 1.1096 1.1781 1.2456 - 

 TSBT [131] 1.0145  1.0453 1.0977 1.1096 1.1781 1.2456 1.6257 

 Quasi-3D [135] 1.0163  1.0473 1.1036 1.1116 1.1837 1.2478 1.6284 

10 Quasi-3D0  1.0025  1.0077 1.0648 1.0604 1.1342 1.1943 1.6001 

 HSBT [5] 1.0005  1.0053 1.0581 1.0578 1.1276 1.1915 - 

 TSBT [131] 1.0005  1.0053 1.0581 1.0578 1.1276 1.1915 1.5969 

 Quasi-3D [135] 1.0022  1.0072 1.0641 1.0598 1.1336 1.1937 1.5995 
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Table 3.17 Non-dimensional fundamental frequency ( ) of FG sandwich beams  

(Type B, C-C, L/h=5). 

p Theory  1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 

0 Quasi-3D0   10.1790 10.1790 10.1790 10.1790 10.1790 10.1790 10.1790 

 HSBT [5] 10.0726 10.0726 10.0726 10.0726 10.0726 10.0726 - 

 TSBT [131] 10.0678 10.0678 10.0678 10.0678 10.0678 10.0678 10.0678 

 Quasi-3D [135]  10.1851 10.1851 10.1851 10.1851 10.1851 10.1851 10.1851 

0.5 Quasi-3D0   8.4503 8.6657 8.7633 8.8381 8.9629 9.0924 9.6747 

 HSBT [5] 8.3606 8.5736 8.6688 8.7442 8.8654 8.9969 - 

 TSBT [131] 8.3600 8.5720 8.6673 8.7423 8.8648 8.9942 9.5731 

 Quasi-3D [135]  8.4635 8.6780 8.7755 8.8498 8.9743 9.1036 9.6857 

1 Quasi-3D0   7.4534  7.7769  7.9343  8.0504  8.2521  8.4653  9.4078 

 HSBT [5]  7.3707  7.6910  7.8428  7.9623  8.1593  8.3747 - 

 TSBT [131] 7.3661  7.6865  7.8390  7.9580  8.1554  8.3705  9.3076 

 Quasi-3D [135] 7.4611  7.7854  7.9431  8.0595  8.2615  8.4752  9.4174 

2 Quasi-3D0   6.4888  6.8660  7.0836  7.2237  7.5048  7.8008  9.1307 

 HSBT [5]  6.4139  6.7867  6.9939  7.1412  7.4138  7.7149  - 

 TSBT [131] 6.4095  6.7826  6.9908  7.1373  7.4105  7.7114  9.0343 

 Quasi-3D [135] 6.4952  6.8740  7.0920  7.2328  7.5143  7.8114  9.1415 

5 Quasi-3D0   5.7977  6.1060  6.3650  6.4701  6.8126  7.1550  8.8536 

 HSBT [5] 5.7315  6.0335  6.2765  6.3925  6.7216  7.0723  - 

 TSBT [131] 5.7264  6.0293  6.2737  6.3889  6.7188  7.0691  8.7605 

 Quasi-3D [135] 5.8016  6.1124  6.3718  6.4780  6.8210  7.1652  8.8653 

10 Quasi-3D0   5.6049  5.8793  6.1424  6.2028  6.5577  6.8934  8.7311 

 HSBT [5] 5.5429  5.8104  6.0555  6.1278  6.4668  6.8119  - 

 TSBT [131] 5.5375  5.8059  6.0527  6.1240  6.4641  6.8087  8.6391 

 Quasi-3D [135] 5.6074  5.8848  6.1485  6.2099  6.5654  6.9030  8.7430 
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Table 3.18 Non-dimensional fundamental frequency ( ) of FG sandwich beams  

(Type B, C-C, L/h=20). 

p Theory  1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 

0 Quasi-3D0   12.2756 12.2756 12.2756 12.2756 12.2756 12.2756 12.2756 

 HSBT [5] 12.2243 12.2243 12.2243 12.2243 12.2243 12.2243 - 

 TSBT [131] 12.2228 12.2228 12.2228 12.2228 12.2228 12.2228 12.2228 

 Quasi-3D [135]  12.2660 12.2660 12.2660 12.2660 12.2660 12.2660 12.2660 

0.5 Quasi-3D0   9.7353  9.9933 10.1471 10.2246 10.4148 10.5924 11.4949 

 HSBT [5] 9.6916  9.9484 10.0985 10.1788 10.3647 10.5455 - 

 TSBT [131] 9.6942  9.9501 10.1001 10.1800 10.3668 10.5460 11.4459 

 Quasi-3D [135]  9.7297  9.9865 10.1403 10.2172 10.4072 10.5842 11.4867 

1 Quasi-3D0   8.3998  8.7663 8.9984 9.1158 9.4057 9.6866 11.0916 

 HSBT [5]  8.3601  8.7248 8.9479 9.0729 9.3555 9.6419 - 

 TSBT [131] 8.3594  8.7241 8.9474 9.0722 9.3550 9.6411 11.0421 

 Quasi-3D [135] 8.3908  8.7569 8.9893 9.1061 9.3964 9.6768 11.0815 

2 Quasi-3D0   7.1920  7.5799 7.8836 8.0128 8.3964 8.7690 10.6820 

 HSBT [5]  7.1568  7.5422 7.8293 7.9732 8.3431 8.7268 - 

 TSBT [131] 7.1563  7.5417 7.8293 7.9727 8.3430 8.7262 10.6336 

 Quasi-3D [135] 7.1839  7.5711 7.8753 8.0035 8.3877 8.7593 10.6719 

5 Quasi-3D0   6.4381  6.6461 6.9970 7.0536 7.5037 7.9092 10.2771 

 HSBT [5] 6.4071  6.6121 6.9387 7.0174 7.4459 7.8696 - 

 TSBT [131] 6.4064  6.6116 6.9389 7.0170 7.4461 7.8692 10.2298 

 Quasi-3D [135] 6.4308  6.6379 6.9891 7.0451 7.4955 7.9000 10.2669 

10 Quasi-3D0   6.3385  6.3920 6.7473 6.7277 7.1889 7.5700 10.0987 

 HSBT [5] 6.3094  6.3595 6.6887 6.6928 7.1293 7.5315 - 

 TSBT [131] 6.3086  6.3590 6.6889 6.6924 7.1296 7.5311 10.0519 

 Quasi-3D [135] 6.3319  6.3841 6.7395 6.7194 7.1809 7.5609 10.0884 

 

  



94 

 

Table 3.19 Non-dimensional critical buckling load ( crN ) of FG sandwich beams  

(Type B, S-S, L/h=5). 

p Theory  1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 

0 Quasi-3D0  49.5970 49.5970 49.5970 49.5970 49.5970 49.5970 49.5970 

 HSBT [5] 48.5964 48.5964 48.5964 48.5964 48.5964 48.5964 - 

 TSBT [131] 48.5959 48.5959 48.5959 48.5959 48.5959 48.5959 48.5959 

 Quasi-3D [135]  49.5906 49.5906 49.5906 49.5906 49.5906 49.5906 49.5906 

0.5 Quasi-3D0  28.4407  30.6650  31.7459  32.5547  33.9720  35.5032  42.8623 

 HSBT [5] 27.8380  30.0146 31.0577 31.8650 33.2336 34.7546 - 

 TSBT [131] 27.8574  30.0301  31.0728  31.8784  33.2536  34.7653  41.9897 

 Quasi-3D [135]  28.4624  30.6825  31.7627  32.5699  33.9858  35.5156  42.8751 

1 Quasi-3D0  20.0899  22.7061 24.0833 25.1060 26.9747 29.0723 39.6116 

 HSBT [5]  19.6541  22.2121  23.5250  24.5602  26.3611  28.4440 - 

 TSBT [131] 19.6525  22.2108  23.5246  24.5596  26.3611 28.4447 38.7838 

 Quasi-3D [135] 20.7425  22.7065 24.0838 25.1075 26.9764 29.0755 39.6144 

2 Quasi-3D0   13.8852  16.2761 17.7748 18.7756 20.8863 23.3002 36.4626 

 HSBT [5]  13.5820  15.9167 17.3254 18.3596 20.3751 22.7859 - 

 TSBT [131] 13.5801  15.9152 17.3249 18.3587 20.3750 22.7863 35.6914 

 Quasi-3D [135] 13.8839  16.2761 17.7742 18.7772 20.8879 23.3042 36.4677 

5 Quasi-3D0  10.3708  11.9320 13.3963 14.0352 16.1613 18.5058 33.4891 

 HSBT [5] 10.1488  11.6697 13.0279 13.7226 15.7313 18.0915 - 

 TSBT [131] 10.1460  11.6676 13.0270 13.7212 15.7307 18.0914 32.7725 

 Quasi-3D [135] 10.3673  11.9301 13.3924 14.0353 16.1605 18.5092 33.4958 

10 Quasi-3D0  9.6573  10.7715 12.1790 12.5402 14.6018 16.7550 32.2197 

 HSBT [5] 9.4543  10.5370 11.8380 12.2621 14.2002 16.3789 - 

 TSBT [131] 9.4515  10.5348 11.8370 12.2605 14.1995 16.3783 31.5265 

 Quasi-3D [135] 9.6535  10.7689 12.1737 12.5393 14.5994 16.7574 32.2264 
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Table 3.20 Non-dimensional critical buckling load ( crN ) of FG sandwich beams  

(Type B, S-S, L/h=20). 

p Theory  1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 

0 Quasi-3D0    53.3175 53.3175 53.3175 53.3175 53.3175 53.3175 53.3175 

 HSBT [5] 53.2364 53.2364 53.2364 53.2364 53.2364 53.2364 - 

 TSBT [131] 53.2364 53.2364 53.2364 53.2364 53.2364 53.2364 53.2364 

 Quasi-3D [135]  53.3145 53.3145 53.3145 53.3145 53.3145 53.3145 53.3145 

0.5 Quasi-3D0    29.7410 32.0853 33.2971 34.1242 35.7026 37.3626 45.6315 

 HSBT [5] 29.6965  32.0368  33.2217  34.0722  35.6202  37.3054  - 

 TSBT [131] 29.7175  32.2629  33.2376  34.0862  35.6405  37.3159  45.5742 

 Quasi-3D [135]  29.7626  32.1022  33.3127  34.1380  35.7149  37.3617  45.6424 

1 Quasi-3D0  20.7541  23.4584  24.9715  26.0001  28.0424  30.2785  41.9655 

 HSBT [5]  20.7213  23.4212  24.8793  25.9588  27.9537  30.2306  - 

 TSBT [131] 20.7212  23.4211  24.8796  25.9588  27.9540  30.2307  41.9004 

 Quasi-3D [135] 20.7530  23.4572  24.9697  25.9989  28.0412  30.2774  41.9639 

2 Quasi-3D0   14.2199  16.6317  18.2521  19.2309  21.5001  24.0284  38.4431 

 HSBT [5]  14.1974  16.6051  18.1400  19.2000  21.3923  23.9899  - 

 TSBT [131] 14.1973  16.6050  18.1404  19.3116  21.3927  23.9900  38.3831 

 Quasi-3D [135] 14.2190  16.6307  18.2493  19.2299  21.4986  24.0276  38.4419 

5 Quasi-3D0  10.6341  12.1078  13.6771  14.2515  16.5100  18.9180  35.1408 

 HSBT [5] 10.6176  12.0886  13.5520  14.2285  16.3829  18.8874  - 

 TSBT [131] 10.6171  12.0883  13.5523  14.2284  16.3834  18.8874  35.0856 

 Quasi-3D [135] 10.6330  12.1068  13.6717  14.2505  16.5069  18.9172  35.1400 

10 Quasi-3D0   10.0003 10.9246 12.4320 12.7023 14.8851 17.0723 33.7379 

 HSBT [5] 9.9850  10.9075  12.3081  12.6820  14.7520  17.0445  - 

 TSBT [131] 9.9847  10.9075  12.3084  12.6819  14.7525  17.0443  33.6843 

 Quasi-3D [135] 9.9995  10.9239  12.4256  12.7014  14.8807  17.0712  33.7367 
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Table 3.21 Non-dimensional critical buckling load ( crN ) of FG sandwich beams  

(Type B, C-F, L/h=5). 

p Theory  1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 

0 Quasi-3D0   13.1138 13.1138 13.1138 13.1138 13.1138 13.1138 13.1138 

 HSBT [5] 13.0595 13.0595 13.0595 13.0595 13.0595 13.0595 - 

 TSBT [131] 13.0594 13.0594 13.0594 13.0594 13.0594 13.0594 13.0594 

 Quasi-3D [135]  13.1224 13.1224 13.1224 13.1224 13.1224 13.1224 13.1224 

0.5 Quasi-3D0    7.3567  7.9357 8.2309 8.4366 8.8217 9.2289 11.2428 

 HSBT [5] 7.3263  7.9026 8.1912 8.4016 8.7789 9.1913 - 

 TSBT [131] 7.3314  7.9068 8.1951 8.4051 8.7839 9.1940 11.2021 

 Quasi-3D [135]  7.3700  7.9482 8.2431 8.4486 8.8334 9.2404 11.2557 

1 Quasi-3D0   5.1480  5.8182 6.1882 6.4447 6.9446 7.4948 10.3484 

 HSBT [5]  5.1246  5.7922 6.1490 6.4166 6.9050 7.4638 - 

 TSBT [131] 5.1245  5.7921 6.1490 6.4166 6.9050 7.4639 10.3093 

 Quasi-3D [135] 5.1533  5.8244 6.1944 6.4516 6.9518 7.5028 10.3581 

2 Quasi-3D0   3.5350  4.1359 4.5331 4.7789 5.3359 5.9601 9.4872 

 HSBT [5]  3.5175  4.1157 4.4927 4.7564 5.2952 5.9347 - 

 TSBT [131] 3.5173  4.1156 4.4927 4.7564 5.2952 5.9348 9.4531 

 Quasi-3D [135] 3.5387  4.1408 4.5376 4.7847 5.3419 5.9674 9.4974 

5 Quasi-3D0  2.6435  3.0170 3.4021 3.5501 4.1053 4.7028 8.6791 

 HSBT [5] 2.6301  3.0006 3.3609 3.5311 4.0621 4.6806 - 

 TSBT [131] 2.6298  3.0004 3.3609 3.5310 4.0620 4.6806 8.6493 

 Quasi-3D [135] 2.6458  3.0203 3.4046 3.5542 4.1095 4.7088 8.6897 

10 Quasi-3D0   2.4803  2.7226 3.0928 3.1665 3.7035 4.2480 8.3359 

 HSBT [5] 2.4685  2.7078 3.0528 3.1489 3.6596 4.2268 - 

 TSBT [131] 2.4683  2.7077 3.0527 3.1488 3.6595 4.2267 8.3073 

 Quasi-3D [135] 2.4823  2.7257 3.0946 3.1702 3.7068 4.2533 8.3463 
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Table 3.22 Non-dimensional critical buckling load ( crN ) of FG sandwich beams  

(Type B, C-F, L/h=20). 

p Theory  1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 

0 Quasi-3D0   13.3993 13.3993 13.3993 13.3993 13.3993 13.3993 13.3993 

 HSBT [5] 13.3730 13.3730 13.3730 13.3730 13.3730 13.3730 - 

 TSBT [131] 13.3730 13.3730 13.3730 13.3730 13.3730 13.3730 13.3730 

 Quasi-3D [135]  13.3981 13.3981 13.3981 13.3981 13.3981 13.3981 13.3981 

0.5 Quasi-3D0  7.4649  8.0536 8.3585 8.5660 8.9631 9.3826 11.4625 

 HSBT [5] 7.4490  8.0363 8.3345 8.5477 8.9372 9.3607 - 

 TSBT [131] 7.4543  8.0405 8.3385 8.5512 8.9422 9.3634 11.4424 

 Quasi-3D [135]  7.4689  8.0563 8.3609 8.5679 8.9647 9.3815 11.4642 

1 Quasi-3D0   5.2067  5.8851 6.2654 6.5234 7.0367 7.5986 10.5393 

 HSBT [5]  5.1944  5.8713 6.2378 6.5083 7.0096 7.5815 - 

 TSBT [131] 5.1944  5.8713 6.2378 6.5083 7.0096 7.5815 10.5174 

 Quasi-3D [135] 5.2050  5.8832 6.2633 6.5214 7.0346 7.5965 10.5375 

2 Quasi-3D0  3.5662  4.1708 4.5775 4.8230 5.3927 6.0278 9.6526 

 HSBT [5]  3.5574  4.1603 4.5457 4.8110 5.3615 6.0134 - 

 TSBT [131] 3.5574  4.1603 4.5457 4.8110 5.3615 6.0134 9.6321 

 Quasi-3D [135] 3.5648  4.1690 4.5753 4.8211 5.3906 6.0257 9.6507 

5 Quasi-3D0  2.6670  3.0356 3.4291 3.5732  4.1396 4.7443 8.8217 

 HSBT [5] 2.6606  3.0276 3.3948 3.5637 4.1042 4.7323 - 

 TSBT [131] 2.6605  3.0275 3.3948 3.5637 4.1043 4.7323 8.8025 

 Quasi-3D [135] 2.6659  3.0341 3.4266 3.5714 4.1373 4.7423 8.8196 

10 Quasi-3D0  2.5090  2.7389 3.1168 3.1845 3.7318 4.2809 8.4688 

 HSBT [5] 2.5033  2.7317 3.0831 3.1759 3.6952 4.2698 - 

 TSBT [131] 2.5032  2.7317 3.0832 3.1759 3.6952 4.2698 8.4500 

 Quasi-3D [135] 2.5082  2.7376 3.1142 3.1829 3.7293 4.2789 8.4666 
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Table 3.23 Non-dimensional critical buckling load ( crN ) of FG sandwich beams  

(Type B, C-C, L/h=5). 

p Theory  1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 

0 Quasi-3D0   160.3064  160.3064 160.3064 160.3064 160.3064 160.3064 160.3064 

 HSBT [5] 152.1588 152.1588 152.1588 152.1588 152.1588 152.1588 - 

 TSBT [131] 152.1470 152.1470 152.1470 152.1470 152.1470 152.1470 152.1470 

 Quasi-3D [135]  160.2780 160.2780 160.2780 160.2780 160.2780 160.2780 160.2780 

0.5 Quasi-3D0  98.3648  105.8972 108.9555 111.8943 116.0009 120.7931 141.7160 

 HSBT [5] 92.8202  99.9361 102.8605 105.6331 109.5284 114.1312 - 

 TSBT [131] 92.8833  99.9860 102.9120 105.6790 109.6030 114.1710 134.2870 

 Quasi-3D [135]  98.4559  105.9750 109.0360 111.9680 116.0700 120.8630 141.7880 

1 Quasi-3D0  71.7633  81.0819 85.1883 89.0595 94.7381 101.5703 132.5067 

 HSBT [5]  67.5184  76.2801 80.1730 83.8267 89.2223 95.7230 - 

 TSBT [131] 67.4983  76.2634 80.1670 83.8177 89.2208 95.7287 125.3860 

 Quasi-3D [135] 71.7654  81.0936 85.2092 89.0834 94.7675 101.6130 132.5510 

2 Quasi-3D0   123.4142 50.8264 59.9292 64.5957 68.6517 75.3511 83.5671 

 HSBT [5]  47.7247  56.2259 60.6127 64.4352 70.7590 78.5570 - 

 TSBT [131] 47.7010  56.2057 60.6056 64.4229 70.7563 78.5608 116.6580 

 Quasi-3D [135] 50.8183  59.9354 64.6133 68.6743 75.3818 83.6159 123.4770 

5 Quasi-3D0  37.8590  44.8607 49.5296 52.6318 59.6057 68.0098 114.6926 

 HSBT [5] 35.5811  42.0298 46.3852 49.2949 55.8338 63.7847 - 

 TSBT [131] 35.5493  42.0033 46.3743 49.2763 55.8271 63.7824 108.2970 

 Quasi-3D [135] 37.8295  44.8488 49.5325 52.6395 59.6248 68.0510 114.7700 

10 Quasi-3D0  34.3176  40.5751 45.0701 47.3821 54.2081 62.1634 110.9318 

 HSBT [5] 32.3345  38.0239 42.2062 44.3593 50.7406 58.2532 - 

 TSBT [131] 104.6920 32.3019 37.9944 42.1935 44.3374 50.7315 58.2461 

 Quasi-3D [135] 34.2824  40.5544 45.0660 47.3804 54.2193 62.1959 111.0120 
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Table 3.24 Non-dimensional critical buckling load ( crN ) of FG sandwich beams  

(Type B, C-C, L/h=20). 

p Theory  1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1 

0 Quasi-3D0  210.7774 210.7774 210.7774 210.7774 210.7774 210.7774 210.7774 

 HSBT [5] 208.9515 208.9515 208.9515 208.9515 208.9515 208.9515 - 

 TSBT [131] 208.9510 208.9510 208.9510 208.9510 208.9510 208.9510 208.9510 

 Quasi-3D [135]  210.7420 210.7420 210.7420 210.7420 210.7420 210.7420 210.7420 

0.5 Quasi-3D0   118.3095  127.6190 132.3616 135.6735 141.8619 148.4165 180.7913 

 HSBT [5] 117.2200  126.4422 131.0594 134.4255 140.4622 147.0614 - 

 TSBT [131] 117.3030  126.5080 131.1240 134.4810 140.5450 147.1040 179.2350 

 Quasi-3D [135]  118.3530  127.6410 132.3830 135.6840 141.8690 148.4130 180.8010 

1 Quasi-3D0   82.7901  93.5770 99.5203 103.6595 111.6956 120.5619 166.4508 

 HSBT [5]  81.9944  92.6754 98.3839 102.6655 110.4792 119.4215 - 

 TSBT [131] 81.9927  92.6741 98.3880 102.6650 110.4830 119.4220 164.9490 

 Quasi-3D [135] 82.7434  93.5248 99.4730 103.6060 111.6480 120.5090 166.4060 

2 Quasi-3D0  56.8386  66.5147 72.8955 76.8684 85.8241 95.8941 152.6477 

 HSBT [5]  56.2793  65.8505 71.8837 76.1030 84.7230 94.9558 - 

 TSBT [131] 56.2773  65.8489 71.8900 76.1020 84.7291 94.9563 151.2500 

 Quasi-3D [135] 56.7986  66.4664 72.8506 76.8166 85.7783 95.8403 152.6000 

5 Quasi-3D0  42.4914  48.5016 54.6876 57.0817 66.0121 75.6538 139.6866 

 HSBT [5] 42.0814  48.0095 53.7751 56.4973 64.9930 74.8903 - 

 TSBT [131] 42.0775  48.0070 53.7820 56.4958 65.0007 74.8903 138.3880 

 Quasi-3D [135] 42.4596  48.4588 54.6418 57.0343 65.9671 75.6019 139.6370 

10 Quasi-3D0  39.8676  43.7664 49.7084 50.9062 59.5406 68.3252 134.1743 

 HSBT [5] 39.4962  43.3252 48.8443 50.3827 58.5529 67.6281 - 

 TSBT [131] 39.4930  43.3233 48.8510 50.3811 58.5607 67.6270 132.9170 

 Quasi-3D [135] 39.8436  43.7273  49.6622  50.8611  59.4944  68.2737 134.1220 

To prove the accuracy of the research results of the thesis by calculating the percentage 

of errors with the research results of the thesis with the verified results [135] with the 

following formula:  

100
  

  
 

%
Research results Verified results

Percentage of errors
Research results


   (3.87) 

Figure 3.9 shows that Percent error of non-dimensional fundamental frequency ( ) and 

non-dimensional critical buckling load ( crN ) of FG sandwich beams (1-2-1) in tables 

3.14, 3.16, 3.18, 3.20, 3.22, 3.24 with the span-to-height L/h=20 and t various BCs.  
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Figure 3.9 The percentage error of non-dimensional fundamental frequency ( ) and 

non-dimensional critical buckling load ( crN ) of FG sandwich beams.  

Figure 3.9, it is easy to see that the percentage error of non-dimensional fundamental 

frequency ( ) and non-dimensional critical buckling load ( crN ) with the S-S boundary 

condition, the percentage error of the thesis with Quasi-3D [135] is almost absent. The 
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maximum error percentage value is 0,12 for non-dimensional fundamental frequency (

 )  and 0.075 for non-dimensional critical buckling load ( crN ) of FG sandwich beams 

when p = 10 and the C-C boundary condition. 

Moreover, the natural frequencies and critical buckling loads of FG sandwich beams of 

Type C are compared with those obtained from HSBT [5] in Tables 3.25-3.27. They are 

carried out for two values of skin-core-skin thickness ratios (1-2-1 and 2-2-1), different 

values of the power-law index and different boundary conditions. It can be seen again 

that by accounting the normal strain, the present theory provides the solution bigger than 

the HSBT [5].  

Table 3.25 Non-dimensional fundamental frequency ( ) of FG sandwich beams with 

the various boundary conditions (Type C). 

Scheme L/h BC Theory 
p 

0 0.5 1 2 5 10 

1-2-1 

5 

S-S Quasi-3D0   4.0996 3.8438 3.7172 3.6119 3.5513 3.5413 

HSBT[5]  4.0691  3.7976 3.6636 3.5530 3.4914 3.4830 

C-C Quasi-3D0   8.4529  7.8924 7.5904 7.2898 7.0032 6.8757 

HSBT[5]  8.3282  7.7553 7.4487 7.1485 6.8702 6.7543 

C-F Quasi-3D0   1.5001  1.4076 1.3627 1.3273 1.3113 1.3118 

HSBT[5]  1.4840  1.3865 1.3393 1.3022 1.2857 1.2867 

20 

S-S Quasi-3D0   4.2711  4.0143 3.8923 3.8003 3.7708 3.7831 

HSBT[5]  4.2445  3.9695 3.8387 3.7402 3.7081 3.7214 

C-C Quasi-3D0   9.6404  9.0524 8.7701 8.5509 8.4627 8.4755 

HSBT[5]  9.5451  8.9243 8.6264 8.3959 8.3047 8.3205 

C-F Quasi-3D0   1.5264  1.4344 1.3907 1.3580 1.3478 1.3525 

HSBT[5]  1.5145  1.4165 1.3700 1.3350 1.3241 1.3292 

2-2-1 

5 

S-S Quasi-3D0  3.7142  3.6270 3.5885 3.5589 3.5411 3.5352 

HSBT[5]  3.6624  3.5692 3.5292 3.5002 3.4858 3.4830 

C-C Quasi-3D0   7.7159  7.4082 7.2306 7.0320 6.8091 6.7045 

HSBT[5]  7.5709  7.2636 7.0901 6.9040 6.8998 6.5941 

C-F Quasi-3D0  1.3571  1.3297 1.3191 1.3135 1.3144 1.3160 

HSBT[5]  1.3344  1.3050 1.2939 1.2884 1.2903 1.2930 

20 

S-S Quasi-3D0   3.8647  3.7990 3.7784 3.7756 3.7966 3.8110 

HSBT[5]  3.8136  3.7406 3.7177 3.7144 3.7380 3.7552 

C-C Quasi-3D0   8.7233  8.5588 8.4999 8.4757 8.4970 8.5157 

HSBT[5]  8.5832  8.4064 8.3442 8.3205 8.3488 8.3738 

C-F Quasi-3D0   1.3807  1.3573 1.3501 1.3495 1.3576 1.3630 

HSBT[5]  1.3607  1.3350 1.3271 1.3263 1.3353 1.3418 
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Table 3.26 Non-dimensional critical buckling load (
crN ) of FG sandwich beams with 

the various boundary conditions (Type C). 

Scheme L/h BC Theory 
p 

0 0.5 1 2 5 10 

1-2-1 

5 

S-S Quasi-3D0   28.7884 23.8554 21.6374 19.7957 18.5212 18.1329 

HSBT[5]  27.9314 22.9869 20.7762 18.9588 17.7320 17.3775 

C-C Quasi-3D0   100.5883 82.4783 73.9348 66.1308 59.2628 56.4049 

HSBT[5]  94.6117 77.5129 69.4877 62.2249 55.9446 53.3734 

C-F Quasi-3D0   7.4344 6.1836 5.6304 5.1884 4.9228 4.8658 

HSBT[5]  7.3149 6.0286 5.4629 5.0154 4.7534 4.7024 

20 

S-S Quasi-3D0   30.0168 24.9914 22.7796 21.0343 20.0386 19.8622 

HSBT[5]  29.6120 24.4140 22.1386 20.3581 19.3639 19.2058 

C-C Quasi-3D0   119.4172 99.2742 90.3696 83.2627 79.0045 78.0989 

HSBT[5]  117.0384 96.4573 87.4069 80.2465 76.0539 75.2379 

C-F Quasi-3D0   7.5312 6.2702 5.7160 5.2800 5.0345 4.9934 

HSBT[5]  7.4254 6.1225 5.5529 5.1084 4.8634 4.8269 

2-2-1 

5 

S-S Quasi-3D0   22.4065 20.3457 19.4156 18.6007 17.9128 17.6221 

HSBT[5]  21.5207 19.4909 18.5897 17.8178 17.1942 16.9422 

C-C Quasi-3D0   79.0342 69.4910 64.6563 59.7538 54.7871 52.5943 

HSBT[5]  74.0960 65.2766 60.8501 56.4008 51.9303 49.9605 

C-F Quasi-3D0   5.7754 5.2959 5.0939 4.9372 4.8346 4.7977 

HSBT[5]  5.6078 5.1228 4.9221 4.7709 4.6809 4.6533 

20 

S-S Quasi-3D0   23.3038 21.4284 20.6576 20.0894 19.7694 19.6701 

HSBT[5]  22.6714 20.7578 19.9839 19.4292 19.1504 19.0848 

C-C Quasi-3D0   92.7010 84.9897 81.7465 79.2375 77.6098 77.0306 

HSBT[5]  89.7255 81.9647 78.7529 76.3344 74.8949 74.4533 

C-F Quasi-3D0   5.8444 5.3767 5.1857 5.0468 4.9722 4.9504 

HSBT[5]  5.6831 5.2064 5.0148 4.8794 4.8150 4.8016 
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Table 3.27 The first three non-dimensional frequencies of FG sandwich beams 

(Type C, C-C). 

Mode Scheme L/h Theory 
p 

0 0.5 1 2 5 10 

1 1-2-1 5 Quasi-3D0   8.4529  7.8924 7.5904 7.2898 7.0032 6.8757 

HSBT[5]  8.3282  7.7553 7.4487 7.1485 6.8702 6.7543 

20 Quasi-3D0   9.6404  9.0524 8.7701 8.5509 8.4627 8.4755 

HSBT[5]  9.5451  8.9243 8.6264 8.3959 8.3047 8.3205 

2-2-1 5 Quasi-3D0   7.7159  7.4082 7.2306 7.0320 6.8091 6.7045 

HSBT[5]  7.5709  7.2636 7.0901 6.9040 6.8998 6.5941 

20 Quasi-3D0   8.7233  8.5588 8.4999 8.4757 8.4970 8.5157 

HSBT[5]  8.5832  8.4064 8.3442 8.3205 8.3488 8.3738 

2 1-2-1 5 Quasi-3D0   20.1538  18.7348 17.9231 17.0413 16.0837 15.6231 

HSBT[5]  19.8886  18.4463 17.6290 16.7552 15.8266 15.3878 

20 Quasi-3D0   26.2039  24.5867  23.7980  23.1611  22.8406  22.8197 

HSBT[5]  25.9323  24.2300  23.4015  22.7371  22.4123  22.4014 

2-2-1 5 Quasi-3D0   18.4986  17.4894  16.8786  16.1729  15.3753  15.0105 

HSBT[5]  18.1865  17.1905  16.5950  15.9164  15.1574  14.8131 

20 Quasi-3D0   23.7284  23.2234  23.0169  22.8833  22.8435  22.8431 

HSBT[5]  23.3403  22.8045  22.5913  22.4619  22.4443  22.4623 

3 1-2-1 5 Quasi-3D0   34.4230  31.9202  30.4476  28.7917  26.9294  26.0255 

HSBT[5]  34.0624  31.5260  30.0458  28.4068  26.5927  25.7241 

20 Quasi-3D0   50.4317  47.2723  45.7039  44.3844  43.5884  43.4278 

HSBT[5]  49.8846  46.5716  44.9326  43.5667  42.7705  42.6332 

2-2-1 5 Quasi-3D0   31.7174  29.7117  28.4955  27.0964  25.5375  24.8362 

HSBT[5]  31.2772  29.2997  28.1131  26.7610  25.2645  24.5968 

20 Quasi-3D0   45.7032  44.5962  44.0940  43.6868  43.4002  43.2918 

HSBT[5]  44.9445  43.7848  43.2741  42.8808  42.6431  42.5723 

 

The first three mode shapes of FG sandwich beams with the power-law index p=2 and 

BCs (C-C) is illustrated in Figure 3.10. Due to small stretching deformation, the resulting 

mode shape is referred to as triply coupled mode, which are substantial involving axial, 

shear and flexure deformation. 
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(a) Mode 1, ω1 = 7.2898 (1-2-1) 

 

(b) Mode 1, ω1 = 7.0320 (2-2-1) 

 

(c) Mode 2, ω2 = 17.0413 (1-2-1) 

 

(d) Mode 2, ω2 = 16.1729 (2-2-1) 

 

(e) Mode 3, ω3 = 28.7917 (1-2-1) 

 

(d) Mode 3, ω3 = 27.0964 (2-2-1) 

Figure 3.10 The first three mode shapes of FG sandwich beams(Type C, L/h = 5, p = 2, C-C). 
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3.8 Conclusions 

This chapter proposed a new higher-order shear deformation theory for static, buckling 

and free vibration analysis of FG beams and FG sandwich beams.  The transverse shear 

stress accounts for a new hyperbolic distribution and satisfies the traction-free boundary 

conditions on the top and bottom surfaces of the beams. Governing equations of motion 

are derived from the Hamilton’s principle and Lagrangian functional for FG beams and 

FG sandwich beams with homogeneous hardcore and soft core. Navier-type solution and 

Ritz solution are developed to solve the problem.  

Numerical results are obtained to investigate effects of the power-law index, span-to 

height ratio and thickness ratio of layers on the deflection, stresses, critical buckling load 

and natural frequencies. The present model is found to be appropriate and efficient in 

analyzing static, buckling and vibration of FG beams and FG sandwich beams.  
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Chapter 4 

Hygro-thermo-mechanical effects on the 

static, buckling and vibration behaviors of 

FGbeams 

 

The objective of this chapter is to present hygro-thermal responses of FG beams using a higher-order 

shear deformation theory in which a higher-order variation of both in-plane and out of plane 

displacement is considered. 

The structure of this chapter is as follows: 

- The hygro-thermal effects on vibration and buckling analysis of functionally graded beams are 

presented in this chapter. The present work is based on a higher-order shear deformation theory 

which accounts for a hyperbolic distribution of transverse shear stress and higher-order variation of 

in-plane and out-of-plane displacements.  

- Equations of motion are obtained from Lagrange’s equations.  

- This paper proposes novel Ritz functions are used to solve problems with different boundary 

conditions. 

- Effects of power-law index, span-to-height ratio, transverse normal strain, temperature and moisture 

changes on the results are discussed. 

- Numerical results for natural frequencies and critical buckling temperatures of functionally graded 

beams are compared with those obtained from previous works. 
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4.1  Introduction 

Hygro-thermal stresses arising from a variation of temperature and moisture content can 

affect structural responses of engineering structures. Therefore, an accurate evaluation 

of environmental exposure is important to investigate hygro-thermal effects on their 

behaviors. Owing to the low density and high stiffness and strength, composite structures 

become popular in several applications of aerospace, automotive engineering, 

construction, etc. They became more attractive due to an introduction of functionally 

graded (FG) materials. The general benefit of these structures compared to conventional 

ones is a continuous variation of hygro-thermal elastic properties in a required direction 

so that interfacial issues found in laminated composite structures could be neglected.  

In order to accurately predict hygro-thermo-mechanical behaviors of FG nano beams and 

FG plates/beams, several models and approaches have been developed in recent years. 

Ebrahimi and Salari [142, 143] investigated nonlocal thermo-mechanical buckling and 

free vibration of FG nano beams in thermal environments. Ebrahimi and Barati [144] 

proposed a unified formulation for dynamic analysis of nonlocal heterogeneous nano 

beams in hygro-thermal environment. Zidi et al. [145] analyzed static responses of FG 

plates under hygro-thermo-mechanical loading using a four variable refined plate theory. 

Zenkour et al. [146, 147] investigated hygro-thermo-mechanical effects on behaviors of 

FG plates on elastic foundations. Fazzolari and Carrera [66] studied thermal stability of 

FG sandwich plates under various through the thickness temperature distributions. 

Vibration and buckling analysis of FG beams under mechanical loads have been 

investigated by many authors based on classical beam theory (CBT) [20, 23], first-order 

shear deformation beam theory (FSBT) [4, 103, 120, 121, 148], higher-order shear 

deformation beam theory (HSBT) [5, 7, 117-119, 123, 128, 133, 139, 149-151]. 

For thermal environments, the thermal stability and vibration analysis of FG beams have 

studied by many authors with different methods. Esfahani et al. [152] studied nonlinear 

thermal buckling of FG beams. The nonlinear thermal dynamic buckling of FG beams is 
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also investigated by Ghiasian et al. [100]. Ma and Lee [153] proposed exact solutions 

for nonlinear bending behavior of FG beams under an in-plane thermal loading. 

Malekzadeh and Monajjemzadeh [154] investigated the dynamic thermal response of FG 

beams under a moving load. Sankar [155] studied the thermal stresses of simply 

supported FG beams. Wattanasakulpong et al. [99] employed the HSBT to study the 

buckling and vibration of FG beams under the uniform thermal loading. Sun et al. [156] 

investigated thermal buckling and post-buckling of FG beams on nonlinear elastic 

foundation. Trinh et al. [108] used Levy-type solution for studying thermo-mechanical 

responses of FG beams. Bhangale and Ganesan [129] analyzed thermoelastic buckling 

and vibration behaviors of FG sandwich beam with constrained viscoelastic core. By 

using the differential quadrature method, Pradhan and Murmu [85] analyzed thermo-

mechanical vibration of FG sandwich beams. However, a limited number of research has 

been considered to investigate responses of FG beams in moisture environments. Shen 

[157, 158] studied nonlinear analysis of composite laminated beams in hygro-thermal 

environments. Moreover, it is known that Ritz method is efficient to deal with composite 

and FG beams with arbitrary boundary conditions. The accuracy and efficiency of this 

approach can be found in some representative earlier works [5, 22, 50, 150, 159-161]. 

The objective of this chapter is to present hygro-thermal responses of FG beams using a 

higher-order shear deformation theory in which a higher-order variation of both in-plane 

and out of plane displacement is considered. FG beams are composed of ceramic and 

metal mixtures, and the material properties are varied according to power-law form. New 

Ritz solution is developed for different boundary conditions to verify the accuracy of the 

present theory and to investigate the effects of the power-law index, the span-to-height 

ratio, the temperature and moisture content on the vibration and buckling responses of 

FG beams under hygro-thermal loadings. 
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4.2  Novel Ritz-shape functions for analysis of FG beams with various BCs 

4.2.1  Material properties 

An FG beam made of a mixture of ceramic and metal isotropic materials, which is 

embedded in a moisture and temperature environment, with length L and uniform 

section b×h is considered as shown in Figure 3.1a. The material properties are varied 

according to power-law form: 

 
2

( ) ( )
2

p

c m m

z h
P z P P P

h

 
   

 
 (4.1) 

where p is the power-law index, Pc and Pm are Young’s modulus E , mass density ρ, 

coefficient of thermal expansion α, coefficient of moisture expansion β, thermal 

conductivity coefficient k of ceramic and metal materials, respectively. 

Moreover, the thermo-elastic material properties of FG beams are also expressed in 

terms of temperature T(K) [154]:  

  1 2 3

0 1 1 2 3= 1 +H H H T H T H T H T

     (4.2) 

where H-1, H0, H1, H2, and H3 are temperature dependent coefficients for various types 

of materials in Table 4.1. It should be noted that both temperature dependency (TD) and 

temperature independency (TID) are considered in this studied. 

4.2.2  Moisture and temperature distribution 

Three different moisture and temperature distributions through the beam depth are 

considered: Uniform moisture and temperature rise, linear moisture and temperature rise 

and nonlinear moisture and temperature rise. 

 Uniform moisture and temperature rise: The temperature and moisture are supposed 

to be uniform in the beam and increased from a reference T0 and C0, thus their current 

values of temperature and moisture are: 

 0

0

T T T

C C C

  

  
 (4.3) 
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where T0 and C0 are reference temperature and moisture, respectively, which are 

supposed to be at the bottom surface of the beam. 

Table 4.1: Temperature dependent coefficients for ceramic and metal materials. 

Material H0 H-1 H1 H2 H3 H at 300 K 

Al2O3       

E 349.55e+9 0 -3.853e-4 4.027e-7 -1.673e-10 320.24e+9 

   6.826e-6 0 1.838e-4 0 0 7.203e-6 

   0.26 0 0 0 0 0.260 

   3800 0 0 0 0 3800 

Si3N4       

E 348.43e+9 0 -3.070e-4 2.160e-7 -8.946e-11 322.27e+9 

   5.8723e-6 0 9.095e-4 0 0 7.475e-6 

κ 13.723 0 -1.032e-3 5.466e-7 -7.876e-11 - 

  0.24 0 0 0 0 0.240 

   2370 0 0 0 0 2370 

β 0 0 0 0 0 0 

ZrO2       

E 244.27e+9 0 -1.371e-3 1.214e-6 -3.681e-10 168.06e+9 

  12.766e-6 0 -1,491e-3 1.006e-5 -6.778e-11 18.591e-6 

κ 1.7 0 1.276e-4 6.648e-8 0 - 

  0.2882 0 1.133e-4 0 0 0.298 

  3657 0 0 0 0 3657 

SUS3O4       

E 201.04e+9 0 3.079e-4 -6.534e-7 0 207.79e+9 

  12.330e-6 0 8.086e-4 0 0 15.321e-6 

κ 15.379 0 -1.264e-3 2.092e-6 -7.223e-10 - 

  0.3262 0 -2.002e-4 3.797e-7 0 0.318 

  8166 0 0 0 0 8166 

β 0.0005 0 0 0 0 0 
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 Linear moisture and temperature rise: The temperature and moisture are linearly 

increased as follows: 
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 (4.4) 

where Tt and Tb are temperatures as well as Ct and Cb are moisture content at the top and 

bottom surfaces of the beam. 

 Nonlinear moisture and temperature rise: The temperature and moisture are varied 

nonlinearly according to a sinusoidal law [66] as follows: 
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 (4.5) 

In addition, the temperature distribution obtained from Fourier equation of steady-state 

one-dimensional heat conduction is also considered: 
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 (4.6) 

4.2.3  Kinematics 

The displacement field is chosen from previous study Quasi-3D1 [149]:  
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where the comma indicates partial differentiation with respect to the coordinate subscript 

that follows; 
2 1,zf f , u and θ are the axial displacement and rotation; and w and wz are 

the transverse displacements, respectively. 

The nonzero strains are given by: 
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 (4.8) 

The elastic constitutive equations are given by: 
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where 
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If the transverse normal strain effect is omitted (εzz), the components of ijQ  in Eq. (4.9) 

are reduced as: 
   

 11 13 552
, 0,

1 2 1

E z E z
Q Q Q



 
  

 
. It is noted that Poisson’s ratio  is 

supposed to be constant through the beam thickness and its value is evaluated as the 

average of ceramic and metal ones. 

4.2.4  Lagrange’s equations 

The strain energy U  of system is expressed by: 
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where  
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The work done V by axial hygro-thermal stress resultants is expressed by: 
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 (4.12) 

The kinetic energy K is expressed by: 
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where dot-superscript denotes the differentiation with the time t; and 0 1 2 1I , I , I , J ,   

2 2 1 2J ,K ,L ,L are the inertia coefficients defined by: 
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Lagrangian functional is used to derive the governing equations of motion: 
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4.3  Ritz method  

The solution field 0 0, , and zu w w is approximated as in the Eq. (3.86): 
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where   is the natural frequency of free vibration of the beam, 1i    the imaginary 

unit,  , , andj j j zju w w  denotes the values to be determined, ( )j x  and ( )j x  are the 

shape functions.  

4.3.1  A shape functions for Ritz method  

To derive analytical solutions, the shape functions  j x  and  j x are chosen for the 

various boundary conditions the Hinged – Hinged (H–H), the Clamped – Hinged (C–H), 

and the Clamped – Clamped (C–C) beams as in Eq. (3.87):    1 1,j j

j jx x x x    . 

By substituting Eq. (3.87) into Eq. (4.16), and using Lagrange’s equations: 
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with 
jq representing the values of   , , , andj j j zj ju w w   that leads to: 
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where the components of the stiffness matrix K and the mass matrix M are given as 

follows: 
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Table 4.2 Kinematic BCs of the beams. 

BCs x=0  x=L 

S – S  0, 0zw w    0, 0zw w   

H – H 0, 0, 0zu w w     0, 0, 0zu w w    

C – H ,0, 0, 0, 0, 0x zu w w w       0, 0, 0zu w w    

C – C ,0, 0, 0, 0, 0x zu w w w       ,0, 0, 0, 0, 0x zu w w w      

C – S ,0, 0, 0, 0, 0x zu w w w       0, 0zw w   

C – F ,0, 0, 0, 0, 0x zu w w w        
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The components of 15 25 35 45, , , andK K K K , which depend on number of boundary 

conditions in Table 4.2, are list below.  

 For Hinged – Hinged (H – H) beams: 
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 For Clamped – Hinged (C – H) beams: 
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 For Clamped – Clamped (C – C) beams: 
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 (4.21) 

4.3.2  A new hybrid functions for Ritz method 

In this chapter, the new hybrid functions  j x  and  j x  for Ritz solution reported in 

Table 4.3 are proposed for six typical BCs. It is clear that they satisfy various BCs:  
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Table 4.3 A new hybrid functions for Ritz solution. 

BCs 
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4.4  Numerical results and discussions 

In this studied, several numerical examples are analyzed to verify the accuracy of present 

theory and investigate the effects of power-law index, span-to-height ratio, transverse 

normal strain, temperature and moisture content on buckling and vibration responses of 

FG beams (Type A) for various BCs in Table 4.2 and Table 4.3. FG beams are made of 

ceramic (Si3N4, Al2O3) and metal (SUS304) with material properties in Table 4.1.  

Three types of temperature and moisture distribution through the beam depth are 

considered:  
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 Uniform moisture and temperature rise (UMR, UTR),  

 Linear moisture and temperature rise (LMR, LTR),  

 Nonlinear moisture and temperature rise (NLMR, NLTR). 

The following non-dimensional parameters are used: 
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 (4.22) 

where m is thermal expansion coefficient of metal at 0T ( )K . Noticing that the following 

relations are used in this study: 0 0 0T 300( ),C 0%,T T 5( )bK K    . 

Table 4.4 Convergence test for the non-dimensional fundamental frequency ( ) of  3 4Si N

andSUS304beams under Fourier-law NLTR (Type A, p=1, L/h=20 and ΔT=20, ΔC=0). 

BCs 
Normal 

strain 

N 

6 8 10 12 14 16 18 

 H-H 0zz    5.9735  5.9719 5.9719 5.9719 5.9719 5.9719 5.9719 

H-Hb 0zz   6.0616     6.0612     6.0611     6.0609     6.0609     6.0609    6.0609    

 0zz   5.7193  5.7178 5.7178 5.7178 5.7178 5.7178 5.7178 

C-H 0zz    9.4357  9.4283 9.4271 9.4265 9.4261 9.4259 9.4257 

C-Hb 0zz   9.4940     9.4926     9.4926     9.4920     9.4919     9.4919     9.4919     

 0zz   9.1075  9.0795 9.0716 9.0678 9.0656 9.0640 9.0627 

C-C 0zz   13.7367  13.7045 13.6990 13.6967 13.6953 13.6944 13.6938 

C-Cb 0zz   13.7532    13.7457    13.7454    13.7435 13.7435 13.7435 13.7435 

 0zz   13.3787  13.2585 13.2321 13.2204 13.2140 13.2095 13.2057 

S-Sb 0zz   6.0203     6.0202     6.0202     6.0202     6.0202     6.0202     6.0202     

C-Sb 0zz   9.4814     9.4802     9.4799     9.4797     9.4797     9.4797     9.4797     

C-Fb 0zz   2.1037     1.9894     1.9843     1.9841 1.9841 1.9841 1.9841 

b: A new hybrid functions.  

For convergence test, Table 4.4 reports the first natural frequency with respect to the 

number of series N of Si3N4/SUS304 beams with p=1, L/h=20 and ΔT=20, ΔC =0. The 

results are calculated with different boundary conditions and Fourier-law NLTR. In order 

to obtain good solution, the number of series N are chosen 8 for S – S, H – H, 12 for C 

–H, C – S, C – F and 14 for C – C beams, respectively. For this reason, these numbers 

are used in the following study. 
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Figure 4.1 Elapsed time to compute frequency 

The calculation programs in this section are implemented with Matlab software version 

2015a on computers with Corei7-3632QM CPU configuration 2.20 GHz. Figure 4.1, it 

is easy to see that the various boundary conditions of polynomial functions in Eq. (3.87), 

the calculation time is longer than the corresponding boundary conditions using the 

hybrid function in Table 4.3. This is also proved easily because the overall matrix when 

using the hybrid function will be smaller than the polynomial function in Eq. (4.17). 

Therefore, in this case the hybrid function is more optimal than the polynomial function. 

“b” is used to indicate that the new hybrid functions in Figure 4.1  and this index will be 

used in the next examples for verification studies. 

As in the first study, FG beams under uniform temperature rise (UTR) are considered. 

Table 4.5 presents the normalized critical temperatures of Si3N4/SUS304 beams for both 

temperature dependency (TD) and temperature independency (TID) solutions with 

different values of power-law index p. It is noted that the results reported in this research 

assume that the temperature resultant in Eq (4.12) is calculated with 11 ( ) / (1 )Q E z   . 

The results are compared with those of Wattanasakulpong et al. [99] and Trinh et al. 
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[108] using HSBT. The present results without normal strain ( 0zz  ) are in good 

agreement with earlier works. Figure 4.2a presents the effect of the power-law index p 

on the normalized critical temperatures of Si3N4/SUS304 beams with L/h = 20. It is 

plotted with both TD and TID solutions as well as with and without normal strain. The 

normalized critical temperatures decrease with the increase of p and the results with

0zz   are smaller than those with 0zz  . This can be explained by the fact that the effect 

of transverse normal strain made beams softer. This figure also shows that the TD 

solutions give lower values than the TID ones, which emphasizes the importance of 

temperature dependency in the FG beams. Similarly, the accuracy of present theory in 

predicting the vibration response of Al2O3/SUS304 FG beams is studied in Table 4.6. 

The results are calculated with p = 0.2, 2 and T = 0, 50 and 100. It is seen that good 

agreements between HSBTs are again found for all cases. Figure 4.2b displays the effects 

of UTR on the normalized fundamental frequency of Al2O3/SUS304 FG beams (L/h = 

30 and p = 2). Obviously, the result decreases with the increase of T  up to critical 

temperatures at which the fundamental frequencies vanish. In this case, the critical 

temperatures of H – H, C – H and C – C in Table 4.2b beams are 52.6580 (K), 103.5923 

(K) and 192.1833 (K), respectively. 
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3 4( ) / beams a o wif Si N SUS th L/h .304 =20  

 

2 3 beams w( ) o ithf Al O /SUS  / =30, 3 =04 2L h pb   

Figure 4.2 Variation of normalized critical temperature and fundamental frequency of 

FG beams with respect to the power-law index p and the uniform temperature rise T . 
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Table 4.5 Normalized critical temperatures ( ) of  FG beams under UTR  

(Type A, L/h = 20, Si3N4/SUS304). 

Temperature 

dependency 
BCs Theory  

p 

0 0.5 1 2 5 10 

TD H-H HSBT ( 0zz  ) 1.309  0.970 0.878 0.812 0.752 0.714 

HSBTb  ( 0zz  ) 1.3097     0.9713     0.8781     0.8123     0.7521     0.7140 

Quasi-3D ( 0zz  ) 1.210  0.897 0.811 0.751 0.695 0.660 

HSBT[108]  1.307  – 0.866 – 0.744 0.710 
HSBT [99] 1.348  – 0.876 – 0.750 0.712 

C-C HSBT ( 0zz  ) 5.133  3.780 3.399 3.136 2.918 2.784 

HSBTb  ( 0zz  ) 5.1325     3.7816     3.3991     3.1363     2.9183     2.7837 

Quasi-3D ( 0zz  ) 4.781  3.522 3.169 2.925 2.720 2.594 

HSBT[108]   5.130  – 3.398 – 2.917 2.782 

C-H HSBT ( 0zz  ) 2.656  1.958 1.763 1.628 1.514 1.443 

HSBTb  ( 0zz  ) 2.6573      1.9598      1.7637      1.6288       1.5148       1.4435 

Quasi-3D ( 0zz  ) 2.464  1.817 1.637 1.512 1.405 1.339 

HSBT[108] 2.654  – 1.758 – 1.510 1.440 

 S-S HSBTb  ( 0zz  ) 1.3093     0.9641     0.8668     0.8005     0.7456     0.7111 

 C-S HSBTb  ( 0zz  ) 2.6559     1.9562     1.7586     1.6235     1.5116     1.4417 

 C-F HSBTb  ( 0zz  ) 0.3304     0.2432     0.2187     0.2020     0.1882     0.1795 

TID H-H HSBT ( 0zz  ) 1.151  0.882 0.806 0.750 0.698 0.665 

HSBTb  ( 0zz  ) 1.1516      0.8827     0.8059     0.7501     0.6985     0.6655 

Quasi-3D ( 0zz  ) 1.071  0.820 0.748 0.696 0.648 0.617 

HSBT[108]  1.151  – 0.796 – 0.693 0.663 
HSBT [99] 1.185  – 0.805 – 0.697 0.664 

C-C HSBT ( 0zz  ) 3.553  2.831 2.606 2.458 2.332 2.248 

HSBTb  ( 0zz  ) 3.5531      2.8337     2.6119     2.4607     2.3334     2.2413 

Quasi-3D ( 0zz  ) 3.336  2.663 2.456 2.313 2.190 2.102 

HSBT[108] 3.559  – 2.609 – 2.333 2.244 

C-H HSBT ( 0zz  ) 2.116  1.644 1.506 1.408 1.324 1.269 

HSBTb  ( 0zz  ) 2.1171      1.6457     1.5062     1.4081     1.3230     1.2682 

Quasi-3D ( 0zz  ) 1.981  1.538 1.408 1.316 1.235 1.184 

HSBT[108]   2.115  – 1.503 – 1.321 1.267 

 S-S HSBTb  ( 0zz  ) 1.1512     0.8769     0.7966     0.7403     0.6930     0.6631 

 C-S HSBTb  ( 0zz  ) 2.1163     1.6430     1.5023     1.4040     1.3206     1.2668 

 C-F HSBTb  ( 0zz  ) 0.3172      0.2360     0.2128     0.1969     0.1837     0.1754 
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Table 4.6 Fundamental frequency ( ) of FG beams under UTR  (Type A, L/h = 30, Al2O3/SUS304). 

Temperature 

dependency 
BCs Theory  

p=0.2  p=2 

0 50 100  0 50 100 

TD H-H HSBT ( 0zz  ) 2.9484  1.8416 –  3.0100 1.1810 – 

 Quasi-3D ( 0zz  ) 2.8232  1.6347 –  2.8826 0.8051 – 

 HSBT[108] 2.9506  1.8450 –  3.0129 1.1816 – 

C-C HSBT ( 0zz  ) 6.6373  6.1198 5.5490  6.7339 5.9821 5.1090 

 Quasi-3D ( 0zz  ) 6.3768  5.8352 5.2320  6.4732 5.6854 4.7553 

 HSBT[108]  6.6371  6.1209 5.5489  6.7366 5.9834 5.1125 

 HSBT [99] 6.6394  6.1189 5.5452  6.7355 5.9802 5.1028 

C-H HSBT ( 0zz  ) 4.5901  3.8552 2.9281  4.6625 3.5699 1.8886 

 Quasi-3D ( 0zz  ) 4.4056  3.6320 2.6236  4.4772 3.3216 1.3476 

 HSBT[108] 4.5898  3.8574 2.9297  4.6653 3.5731 1.8925 

TID H-H HSBT ( 0zz  ) 2.9484  1.8191 –  3.0100 1.0859 – 

 Quasi-3D ( 0zz  ) 2.8232  1.6086 –  2.8826 0.6563 – 

 HSBT[108] 2.9506  1.8220 –  3.0129 1.0868 – 

C-C HSBT ( 0zz  ) 6.6373  6.1124 5.5126  6.7339 5.9605 5.0032 

 Quasi-3D ( 0zz  ) 6.3768  5.8266 5.1905  6.4732 5.6616 4.6378 

 HSBT[108]  6.6371  6.1142 5.5141  6.7366 5.9631 5.0068 

 HSBT [99] 6.6394  6.1109 5.5081  6.7335 5.9581 4.9965 

C-H HSBT ( 0zz  ) 4.5901  3.8431 2.8594  4.6625 3.5347 1.5906 

 Quasi-3D ( 0zz  ) 4.4056  3.6185 2.5435  4.4772 3.2828 0.8707 

 HSBT[108] 4.5898  3.8437 2.8608  4.6653 3.5391 1.5946 

 

The next example aims to investigate the effects of linear and nonlinear temperature rise 

(LTR, NLTR) on the thermal buckling and vibration of FG beams. For verification 

purpose, the critical temperatures of Si3N4/SUS304 beams with L/h = 40 are reported in 

Table 4.7. These results are compared with those of Esfahani et al. [152], Ebrahimi and 

Salari [142] based on FSDT. It is observed that the present solutions are in good 

agreement with those of [152] for C–C beams under the Fourier-law NLTR while there 

are slight deviations for several values of p between the present solutions and those of 

[142] for H-H beams under LTR. It is noted that the superscript ‘‘a” is used to indicate 

that Poisson’s ratio effect is not included in the constitutive equation and thermal stress 

resultant (
11 ( )Q E z ) and this index will be used in the next examples for verification 

studies.  
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 (a) p=1 and L/h=20 

 
 (b) L/h=30 

Figure 4.3 Variation of normalized fundamental frequency of FG beams with respect 

to the power-law index p and temperature rise (Type A, Si3N4/SUS304, TD). 
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Table 4.7 Critical temperature ( ) of  FG beams under LTR and Fourier-law NLTR   

(Type A, L/h = 40, Si3N4/SUS304, TD). 

Temperature 

distribution 
BCs Theory 

p 

0 0.5 1 2 5 10 

LTR 

H-H HSBTa ( 0zz  ) 116.4406  91.8046 82.9295 75.8794 69.0474 64.8133 

HSBTb ( 0zz  ) 116.4489    91.8593    82.9361    75.8855    69.0538    64.8135    

FSBT[142]  127.3340  95.5739 84.6229 76.4715 69.4307 – 

Fourier law 

NLTR 

C-C HSBTa ( 0zz  ) 411.7059  377.7547 357.9741 337.0286 310.0925 291.3543 

HSBTb ( 0zz  ) 411.5244   377.7382   357.7919   336.8448   309.9130   291.1854 

FSBT[152]  412.2400  377.9600 357.9400 337.0300 310.1200 291.3500 

 11

aQ E z , b: A new hybrid functions.  

Table 4.8 Critical temperature ( ) of  FG beams under LTR for various boundary conditions 

(Type A, L/h = 20, Si3N4/SUS304, TD). 

BCs Theory  
p 

0 0.5 1 2 5 10 

H-H HSBT ( 0zz  ) 411.5245 354.710 332.653 314.449 295.2286 282.2571 

HSBTb  ( 0zz  ) 411.6255   354.943 332.747 314.546 295.3254   282.3345 

Quasi-3D( 0zz  ) 385.1274 330.2483 308.9443 291.3484 272.8943 260.5459 

HSBTa( 0zz  ) 411.7060 354.8756 332.8174 314.6159 295.3957 282.4179 

HSBT[108]   451.5600 360.9400 328.1300 301.5600 279.6900 265.6300 

C-C HSBT ( 0zz  ) 1156.158 1106.1719 1089.8592 1078.7302 1073.7643 1065.7153 

HSBTb  ( 0zz  ) 1156.1584 1106.4055 1089.8592 1078.7302 1073.7642 1065.7028 

Quasi-3D( 0zz  ) 1100.985 1046.4138 1027.9710 1014.8334 1006.9889 997.0252 

HSBTa( 0zz  ) 1157.799 1107.9445 1091.7181 1080.6962 1075.8608 1067.8635 

HSBT[108]   – 1142.1900 1062.5000 1004.6900 957.8100 921.8800 

C-H HSBT ( 0zz  ) 718.5718 652.8875 624.7796 604.3525 584.2301 568.0967 

HSBTb  ( 0zz  ) 718.8134   653.3648   625.0102   604.5985   584.4879   568.3256 

Quasi-3D( 0zz  ) 679.1061 613.3336 585.5554 564.7903 544.1176 528.0379 

HSBTa( 0zz  ) 719.2049 653.5143 625.4122 605.0142 584.9244 568.7844 

HSBT[108]   814.0600 667.1900 612.5000 570.3100 531.2500 507.8100 

S-S HSBTb  ( 0zz  ) 411.5244   353.1861   329.7609   311.2492   293.4330   281.4735 

C-S HSBTb  ( 0zz  ) 718.5673   652.6818   624.0455   603.3681   583.3933   567.8582 

C-F HSBTb  ( 0zz  ) 116.4379    91.2109    81.8686    74.7757    68.4456    64.5543 

 11

aQ E z , b: A new hybrid functions.  
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Table 4.9 Critical temperature ( ) of  FG beams under Fourier-law NLTR for various 

boundary conditions (Type A, L/h = 20, Si3N4/SUS304, TD). 

BCs Theory 
p 

0 0.5 1 2 5 10 

H-H HSBT ( 0zz  ) 411.5245  379.3918 360.9977 340.3445 311.8557 291.9825 

HSBTb ( 0zz  ) 411.6317   379.6568   361.1057   340.4547   311.9596   292.0785 

Quasi-3D( 0zz  ) 385.1274  352.4187 334.2954 314.4406 287.6173 269.1585 

HSBTa ( 0zz  ) 411.7060  379.5747 361.1826 340.5314 312.0370 292.1517 

HSBT[108] 451.5600  388.7500 357.5000 327.5000 293.7500 273.7500 

C-C HSBT ( 0zz  ) 1156.1584  1204.0415 1213.1728 1202.5179 1164.6606 1124.4957 

HSBTb ( 0zz  ) 1156.1584 1204.2395 1213.1727 1202.5179 1164.6606 1124.4949 

Quasi-3D( 0zz  ) 1100.9855  1140.8570 1146.0126 1133.6258 1093.7100 1052.6690 

HSBTa ( 0zz  ) 1157.7996  1205.9121 1215.1809 1204.6140 1166.8631 1126.7276 

HSBT[108]   –  – – 1132.5000 1042.5000 972.5000 

C-H HSBT ( 0zz  ) 718.5718  709.6778 695.0922 672.6986 630.3660 596.2206 

HSBTb ( 0zz  ) 718.7615   710.1652   695.3885   672.9898   630.6550   596.4957 

Quasi-3D( 0zz  ) 679.1061  666.0060 650.0307 627.0078 585.8770 553.3163 

HSBTa ( 0zz  ) 719.2049  710.3689 695.8183 673.4623 631.1354 596.9569 

HSBT[108]   814.0600  736.2500 688.7500 637.5000 572.5000 531.2500 

S-S HSBTb ( 0zz  ) 411.6604   377.7382   357.7919   336.8448   309.9130   291.1854 

C-S HSBTb ( 0zz  ) 718.5679   709.4838   694.3012   671.7779   629.8435   595.9941 

C-F HSBTb ( 0zz  ) 116.4405    94.7985    85.7775    78.2081    70.5864    65.8123 

 11

aQ E z , b: A new hybrid functions.  

Tables 4.8 and 4.9 show the comparisons of the critical temperatures from the present 

solutions and those from [108]. It shows that there are small differences between the 

HSBT models. The effect of normal strain is again found in which the HSBTs over-

predict critical temperatures in comparison with the Quasi-3D theory. Figure 4.3a 

displays the variation of fundamental frequency for UTR, LTR and Fourier-law NLTR. 

The results decrease with the increase of ΔT and vanish at the critical temperatures.  

Table 4.10 and Figure 4.3b consider the effects of temperature distribution under Fourier 

– law and sinusoidal – law through the beam depth for various boundary conditions. For 

comparison, the critical temperature with Fourier law is smaller than that with sinusoidal 

one. 
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Table 4.10 Critical temperature ( ) of  FG beams under Fourier and sinusoidal-law NLTR 

(Type A, L/h = 30, Si3N4/SUS304, TD). 

Temperature 

distribution 
BCs Theory 

p  

0 0.5 1 2 5 10 

Fourier H-H HSBT ( 0zz  ) 202.2578 173.5389 160.5549 148.3615 134.2035 125.0658 

HSBTb ( 0zz  ) 202.2828   173.6457   160.5751   148.3834   134.2251   125.0851 

Quasi-3D( 0zz  ) 187.7199  160.0195 147.7213 136.2821 123.1300 114.6789 

C-C HSBT ( 0zz  ) 647.7525  630.7537 613.2717 589.7918 550.4308 519.7221 

HSBTb ( 0zz  ) 647.7525   630.9784   613.2717   589.7918   550.4308   519.7216 

Quasi-3D( 0zz  ) 611.2257  590.8552 572.5358 548.9211 510.9149 481.7654 

C-H HSBT ( 0zz  ) 379.9401  345.7176 326.5833 306.6677 281.4281 264.1042 

HSBTb ( 0zz  ) 380.0093   345.9351   326.6459   306.7295   281.4875   264.1611 

Quasi-3D( 0zz  ) 355.7747  321.7415 302.8348 283.7695 259.9836 243.8099 

 S-S HSBTb ( 0zz  ) 202.2578   172.5566   158.7477   146.4388     133.1738   124.6393 

 C-S HSBTb ( 0zz  ) 379.9392   345.5418   326.0044   306.0376   281.0863   263.9608 

 C-F HSBTb ( 0zz  ) 48.8333    36.9935    32.5143    28.9856    25.6615    23.6175 

Sinusoidal H-H HSBT ( 0zz  ) 266.8324  224.9764 208.1080 193.4138 178.0297 168.1896 

HSBTb ( 0zz  ) 266.8651   225.1077   208.1357   193.4415   178.0572   168.1996 

Quasi-3D( 0zz  ) 248.2054  208.2022 192.1421 178.2136 163.6644 154.4077 

C-C HSBT ( 0zz  ) 823.1910  755.8429 727.9468 706.6631 687.8553 672.7974 

HSBTb ( 0zz  ) 823.1910   756.0849   727.9468   706.6631   687.8553   672.7655 

Quasi-3D( 0zz  ) 778.0221  710.9078 683.0384 661.3097 641.8079 625.5963 

C-H HSBT ( 0zz  ) 491.8173  430.8636 406.2229 385.4767 364.4358 349.8751 

HSBTb ( 0zz  ) 491.8957   431.0940   406.2958   385.5505   364.5125   349.9202 

Quasi-3D( 0zz  ) 461.5226  402.6337 378.6681 358.7276 337.7749 323.6678 

S-S HSBTb ( 0zz  ) 266.8324   223.8160   205.9487   191.0943   176.7504   167.6308 

C-S HSBTb ( 0zz  ) 491.8146   431.3370   405.6027   384.7870   364.0404   349.6764 

C-F HSBTb ( 0zz  ) 66.2418    49.9518    43.8147    39.0521    34.7447    32.1481 

b: A new hybrid functions.  

Moreover, Tables 4.11-4.12 present the normalized fundamental frequency of FG beams 

(Si3N4/SUS304) with L/h=20, p= 0.1, 0.5, and 1, ΔT =20 and 80, subjected to the LTR 

and Fourier-law NLTR. The results are compared to those of [108, 142] for different 

boundary conditions and good agreements between the HSBT models are again found. 

The final research is to analyses the effects of moisture content on the thermal vibration 

behavior of FG beams.  

 



129 

 

Table 4.11 Fundamental frequency ( ) of  FG beams under LTR  

(Type A, L/h = 20, Si3N4/SUS304, TD). 

Temperature 

distribution 
BCs Theory 

T(K) 20    T(K) 80   

p = 0.1 0.5 1  p = 0.1 0.5 1 

LTR H-H HSBT ( 0zz  ) 8.7846  6.8133 5.9658  8.1742 6.2547 5.4252 

 HSBTb ( 0zz  ) 8.8832     6.9056     6.0551  8.2857 6.3596 5.5275 

 Quasi-3D( 0zz  ) 8.4170  6.5248 5.7113  7.7782 5.9387 5.1433 

 HSBTa ( 0zz  ) 8.4391  6.5450 5.7307  7.8532 6.0088 5.2118 

 HSBT[142] 8.4716  6.5742 5.7588  7.8766 6.0166 5.2128 

 HSBT [108] 8.4634  6.5415 5.7114  7.8795 6.0063 5.1927 

C-C HSBT ( 0zz  ) 20.1188  15.6333 13.6920  19.8063 15.3661 13.4427 

 HSBTb ( 0zz  ) 20.1797    15.6863    13.7415     19.8706    15.4224    13.4968   

 Quasi-3D( 0zz  ) 19.4059  15.0816 13.2106  19.0807 14.8018 12.9487 

 HSBTa ( 0zz  ) 19.3522  15.0342 13.1654  19.0523 14.7779 12.9263 

 HSBT[142] 19.6398  15.2580 13.3671  19.3420 15.0040 13.1304 

 HSBT [108] 19.3371  15.0222 13.1554  18.9778 14.6972 12.8431 

C-H HSBT ( 0zz  ) 13.8663  10.7631 9.4225  13.4286 10.3728 9.0500 

 HSBTb ( 0zz  ) 13.9555    10.8353     9.4869  13.5244 10.4512 9.1204 

 Quasi-3D( 0zz  ) 13.3426  10.3565 9.0669  12.8863 9.9482 8.6764 

 HSBTa ( 0zz  ) 13.3283  10.3443 9.0552  12.9083 9.9697 8.6976 

 HSBT[142] 13.4380  10.4238 9.1227  13.0201 10.0515 8.7674 

 HSBT [108] 13.3373  10.3526 9.0635  12.8837 9.9342 8.6571 

 S-S HSBTb ( 0zz  ) 8.8788     6.8788     6.0142  8.2812     6.3319     5.4848     

 C-S HSBTb ( 0zz  ) 13.9370    10.8221     9.4755  13.5060    10.4380     9.1095 

 C-F HSBTb ( 0zz  ) 2.9857 2.2816 1.9755  1.9407     1.2177     0.8470     

 11 ,aQ E z  b: A new hybrid functions.  

Figure 4.4a presents the effect of the power-law index p on the normalized fundamental 

frequency of Si3N4/SUS304 FG beams (L/h = 20) with different values of ΔC. It shows 

that for a moisture rise, the fundamental frequency decreases with the increase of p and 

the moisture content rise makes the beams softer. These phenomena are also observed in 

Figure 4.4b which plots the variation of fundamental frequency with respect to the UTR. 

It can be seen from this figure that the frequency of the FG beams with moisture content 

rise ΔC =2% is smaller than that without moisture content rise, and that the critical 

temperatures decrease with the increase of ΔC. 
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Table 4.12 Fundamental frequency ( ) of  FG beams under Fourier-law  NLTR  

(Type A, L/h = 20, Si3N4/SUS304, TD). 

Temperature 

distribution 
BCs Theory 

T(K) 20    T(K) 80   
p = 0.1 0.5 1  p = 0.1 0.5 1 

Fourier-law  
NLTR 

H-H HSBT ( 0zz  ) 8.7865  6.8184 5.9719  8.1855 6.2841 5.4605 

  HSBTb ( 0zz  ) 8.8843     6.9104     6.0611      8.2956     6.3879     5.5614     

 Quasi-3D ( 0zz  ) 8.4190  6.5302 5.7178  7.7900 5.9696 5.1805 

 HSBTa ( 0zz  ) 8.4409  6.5499 5.7366  7.8640 6.0370 5.2456 

 HSBT[142] 8.4675  6.5437 5.7124  7.9265 6.0402 5.2186 

 HSBT [108] 8.4730  6.5779 5.7632  7.8861 6.0431 5.2448 

 C-C HSBT ( 0zz  ) 20.1198  15.6360 13.6953  19.8121 15.3810 13.4604 

 

 HSBTb ( 0zz  ) 20.1798    15.6885       13.7454         19.8782    15.4374    13.5129 

 Quasi-3D ( 0zz  ) 19.4070  15.0844 13.2140  19.0867 14.8172 12.9670 

 HSBTa ( 0zz  ) 19.3532  15.0369 13.1685  19.0578 14.7921 12.9432 

 HSBT[142] 19.6390  15.2501 13.3558  19.3552 14.9886 13.1011 

 HSBT [108] 19.3379  15.0244 13.1579  18.9832 14.7115 12.8600 

C-H HSBT ( 0zz  ) 13.8676  10.7669 9.4271  13.4367 10.3935 9.0747 

 HSBTb ( 0zz  ) 13.9409 10.8310 9.4880  13.5191    10.4672     9.1457    

 Quasi-3D ( 0zz  ) 13.3441  10.3605 9.0716  12.8947 9.9698 8.7022 

 HSBTa ( 0zz  ) 13.3297  10.3479 9.0595  12.9160 9.9896 8.7214 

 HSBT[142]  13.4395  10.4211 9.1178  13.0483 10.0594 8.7648 

 HSBT[108]  13.3382  10.3553 9.0669  12.8907 9.9533 8.6801 

 S-S HSBTb ( 0zz  ) 8.8914     6.8873     6.0202  8.2930 6.3606 5.5191 

 C-S HSBTb ( 0zz  ) 13.9551    10.8311     9.4799  13.5148    10.4584     9.1346 

 C-F HSBTb ( 0zz  ) 2.9921     2.2901     1.9843  1.9651     1.2940     0.9601 

 11 ,aQ E z  b: A new hybrid functions.  

Tables 4.13–4.15 present the normalized fundamental frequencies of Si3N4/SUS304 FG 

beams under the uniform, linear and nonlinear moisture (UMR, LMR, NLMR) and 

temperature rises. It is noted that the sinusoidal-law NLMR is used in this example. The 

results are calculated for the power-law indices p = 0.2, 1 and 5, ΔT = 0, 20 and 40, ΔC 

= 0%, 1% and 2%. The present solutions are compared with those obtained from 

Ebrahimi and Barati [144] based on HSBT with H-H beam. The present solutions based 

on HSBT without Poisson’s ratio are in good agreement with those of [144] for all 
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moisture and temperature changes. The effect of normal strain is clearly observed in 

which the quasi-3D solutions are smaller the HSBT ones. 

 

 
(a) ΔT=20 

 
 (b) p =5 

Figure 4.4 Variation of normalized fundamental frequency of FG beams with respect to the 

power-law index, moisture and temperature rise (Type A, L/h = 20, Si3N4/SUS304, TD). 
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Table 4.13 Fundamental frequency ( ) of  FG beams under uniform moisture and temperature rise for various boundary 

conditions (Type A, L/h = 20, Si3N4/SUS304, TD). 

BCs ΔC Theory 
ΔT(K) =0  ΔT(K) =20  ΔT(K) =40 

p = 0.2 1 5  p = 0.2 1 5  p =0.2 1 5 

H-H ΔC =0% HSBT ( 0zz  ) 8.3030  6.2144 5.0652  7.9313 5.8635 4.7304  7.5298 5.4784 4.3579 

 Quasi-3D( 0zz  ) 7.9769  5.9708 4.8664  7.5893 5.6046 4.5168  7.1685 5.2003 4.1250 

 HSBTa ( 0zz  ) 7.9757  5.9694 4.8656  7.6186 5.6324 4.5441  7.2327 5.2624 4.1863 

 HSBT[144]  7.9680  5.9314 4.8449  – – –  – – – 

ΔC =1% HSBT ( 0zz  ) 8.1372  5.8496 4.5711  7.7574 5.4749 4.1958  7.3463 5.0598 3.7699 

 Quasi-3D( 0zz  ) 7.8043  5.5906 4.3504  7.4076 5.1971 3.9542  6.9757 4.7578 3.4988 

 HSBTa ( 0zz  ) 7.8164  5.6192 4.3913  7.4516 5.2593 4.0309  7.0566 4.8606 3.6219 

 HSBT[144]  –  – –  7.4435 5.2167 4.0063  – – – 

ΔC =2% HSBT ( 0zz  ) 7.9679  5.4606 4.0166  7.5796 5.0564 3.5824  7.1581 4.6033 3.0712 

 Quasi-3D( 0zz  ) 7.6278  5.1826 3.7644  7.2213 4.7549 3.2969  6.7775 4.2697 2.7327 

 HSBTa ( 0zz  ) 7.6539  5.2457 3.8590  7.2809 4.8576 3.4421  6.8759 4.4224 2.9514 

 HSBT[144]  – – –  – – –  6.8673  4.3722 2.9180 

C-H ΔC =0% Quasi-3D ( 0zz  ) 12.4092  9.2498 7.5477  12.1243 8.9822 7.2940  11.8230 8.6962 7.0206 

ΔC =1% Quasi-3D ( 0zz  ) 12.2809  8.9691 7.1716  11.9926 8.6917 6.9021  11.6876 8.3948 6.6106 

ΔC =2% Quasi-3Da( 0zz  ) 12.1512  8.6786 6.7731  11.8594 8.3905 6.4848  11.5505 8.0814 6.1715 

C-C ΔC =0% Quasi-3D ( 0zz  ) 17.9130  13.3399 10.8821  17.7061 13.1479 10.7012  17.4896 12.9450 10.5089 

ΔC =1% Quasi-3D ( 0zz  ) 17.8188  13.1346 10.6086  17.6106 12.9390 10.4218  17.3928 12.7321 10.2231 

ΔC =2% Quasi-3Da( 0zz  ) 17.7240  12.9258 10.3270  17.5146 12.7262 10.1338  17.2954 12.5153 9.9282 

 11

aQ E z  
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Table 4.14 Fundamental frequency ( ) of  FG beams under linear moisture and temperature rise  

(Type A, L/h = 20, Si3N4/SUS304, TD). 

BCs ΔC Theory 
ΔT(K) =0  ΔT(K) =20  ΔT(K) =40 

p=0.2 1 5  p =0.2 1 5  p =0.2 1 5 

H-H ΔC =0% HSBT ( 0zz  ) 8.2127  6.1295 4.9846  8.0343 5.9658 4.8259  7.8474 5.7943 4.6597 

 Quasi-3D( 0zz  ) 7.8828  5.8824 4.7825  7.6969 5.7113 4.6164  7.5016 5.5317 4.4420 

 HSBTa ( 0zz  ) 7.8889  5.8879 4.7882  7.7177 5.7307 4.6358  7.5382 5.5661 4.4763 

 HSBT[144] 7.8817  5.8491 4.7664  – – –  – – – 

ΔC =1% HSBT ( 0zz  ) 8.1651  5.9992 4.7669  7.9857 5.8315 4.5999  7.7976 5.6558 4.4245 

 Quasi-3D( 0zz  ) 7.8334  5.7466 4.5554  7.6461 5.5711 4.3800  7.4495 5.3866 4.1949 

 HSBTa ( 0zz  ) 7.8432  5.7628 4.5793  7.6710 5.6018 4.4189  7.4904 5.4331 4.2505 

 HSBT[144] – – –  7.6651  5.5616 4.3962  – – – 

ΔC =2% HSBT ( 0zz  ) 8.1173  5.8659 4.5388  7.9368 5.6941 4.3623  7.7475 5.5137 4.1760 

 Quasi-3D( 0zz  ) 7.7835  5.6076 4.3164  7.5951 5.4273 4.1300  7.3970 5.2374 3.9323 

 HSBTa ( 0zz  ) 7.7973  5.6348 4.3603  7.6240 5.4699 4.1908  7.4423 5.2967 4.0120 

 HSBT[144]  – – –  – – –  7.4365  5.2518 3.9832 

C-H ΔC =0% Quasi-3D( 0zz  ) 12.3395  9.1845 7.4860  12.2043 9.0631 7.3697  12.0640 8.9374 7.2497 

ΔC =1% Quasi-3D( 0zz  ) 12.3027  9.0839 7.3194  12.1671 8.9609 7.1996  12.0263 8.8335 7.0759 

ΔC =2% Quasi-3D( 0zz  ) 12.2659 8.9822 7.1486  12.1298 8.8574 7.0250  11.9885 8.7282 6.8974 

C-C ΔC =0% Quasi-3D( 0zz  ) 17.8621  13.2929 10.8379  17.7660 13.2106 10.7608  17.6668 13.1258 10.6817 

ΔC =1% Quasi-3D( 0zz  ) 17.8352  13.2192 10.7164  17.7389 13.1363 10.6379  17.6395 13.0509 10.5573 

ΔC =2% Quasi-3D( 0zz  ) 17.8082  13.1452 10.5933  17.7118 13.0616 10.5133  17.6122 12.9755 10.4313 

 11

aQ E z  
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Table 4.15 Fundamental frequency ( ) of FG beams under sinusoidal moisture and temperature rise  

(Type A, L/h = 20, Si3N4/SUS304, TD). 

BCs ΔC Theory 
ΔT(K) =0  ΔT(K) =20  ΔT(K) =40 

p =0.2 1 5  p =0.2 1 5  p =0.2 1 5 

H-H ΔC =0% HSBT ( 0zz  ) 8.2127 6.1295 4.9846  8.0857 6.0152 4.8730  7.9533 5.8962 4.7572 

 Quasi-3D( 0zz  ) 7.8828  5.8824 4.7825  7.7504 5.7629 4.6656  7.6122 5.6383 4.5440 

 HSBTa ( 0zz  ) 7.8889  5.8879 4.7882  7.7670 5.7781 4.6811  7.6399 5.6639 4.5699 

 HSBT[144] 7.8817  5.8491 4.7664  – – –  – – – 

ΔC =1% HSBT ( 0zz  ) 8.1874  6.0529 4.8399  8.0600 5.9370 4.7244  7.9272 5.8163 4.6044 

 Quasi-3D( 0zz  ) 7.8565  5.8026 4.6316  7.7236 5.6813 4.5104  7.5848 5.5547 4.3841 

 HSBTa ( 0zz  ) 7.8646  5.8143 4.6493  7.7423 5.7030 4.5385  7.6148 5.5872 4.4232 

 HSBT[144]  – – –  7.7355  5.6625 4.5149  – – – 

ΔC =2% HSBT ( 0zz  ) 8.1619  5.9753 4.6907  8.0341 5.8577 4.5710  7.9009 5.7353 4.4464 

 Quasi-3D( 0zz  ) 7.8300  5.7217 4.4757  7.6967 5.5985 4.3496  7.5574 5.4699 4.2180 

 HSBTa ( 0zz  ) 7.8402  5.7398 4.5061  7.7175 5.6270 4.3912  7.5896 5.5094 4.2716 

 HSBT[144]  – – –  – – –  7.5826  5.4650 4.2429 

C-H ΔC =0% Quasi-3D( 0zz  ) 12.3395  9.1845 7.4860  12.2436 9.1010 7.4057  12.1444 9.0147 7.3230 

ΔC =1% Quasi-3D( 0zz  ) 12.3199  9.1253 7.3749  12.2239 9.0411 7.2928  12.1245 8.9540 7.2085 

ΔC =2% Quasi-3D( 0zz  ) 12.3003  9.0656 7.2619  12.2041 8.9807 7.1781  12.1045 8.8930 7.0919 

C-C ΔC =0% Quasi-3D( 0zz  ) 17.8621  13.2929 10.8379  17.7948 13.2382 10.7870  17.7252 13.1818 10.7347 

ΔC =1% Quasi-3D( 0zz  ) 17.8478  13.2495 10.7567  17.7804 13.1946 10.7051  17.7107 13.1379 10.6521 

ΔC =2% Quasi-3D( 0zz  ) 17.8334  13.2059 10.6748  17.7659 13.1507 10.6225  17.6962 13.0938 10.5687 

 11

aQ E z  
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4.5  Conclusions 

Hygro-thermal vibration and stability analysis of FG beams is presented. It is based on 

a higher-order shear deformation theory, which considers a higher-order distribution of 

transverse shear stress and both in-plane and out-of-plane displacements. These beams 

are subjected to hygro-thermal loadings under uniform, linear and nonlinear distributions 

through the beam depth. Lagrange’s equations are applied to derive the characteristic 

dynamic equations and the New Ritz solution method is developed to solve the problems 

for different boundary conditions. The proposed Ritz solution converges quickly and 

agrees well with that from other studies. The obtained numerical results showed that: 

 The critical buckling temperatures and natural frequencies derived from the quasi-3D 

theory, which includes normal strain, is smaller than those from the HSBT, which 

neglects it. This implies that the effect of normal strain is important and needs to be 

considered for the analysis of hygro-thermal behaviors of FG beams. 

 The increase of the power-law index leads to the increase of metal volume fraction, 

which makes the beams softer and decreases the critical temperature and natural 

frequency. 

 The temperature dependent solutions give lower values than the temperature 

independent ones, so the importance of temperature dependency in the FG beams is 

confirmed. 

 For a temperature rise, the critical temperature and fundamental frequency derived 

from nonlinear temperature rise are larger than those from uniform one. 

 The critical temperature and fundamental frequency calculated from Fourier-law 

nonlinear temperature distribution are smaller than those from sinusoidal-law one. 

 The thermal buckling and vibration responses of FG beams decrease with the increase 

of moisture content. 

In conclusion, the proposed beam model and approach is found to be simple and efficient 

for hygro-thermal buckling and vibration of FG beams. 
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Chapter 5 

Size dependent effects on the thermal 

buckling and vibration behavior of FG 

beams in thermal environments 
  

 
This chapter proposes size dependent effects on the thermal buckling and vibration behavior of FG 

beams in thermal environments. A general theoretical formulation is derived from the fundamental of 

two-dimensional elasticity theory and then novel higher-order shear deformation beam theories and 

Timoshenko beam theory are obtained.  

The highlight of this chapter is as follows: 

- The objectives of this chapter is to propose analysis of FG micro and nano beams with various 

boundary conditions in thermal environments. 

- The nonlocal elasticity theory is based on Timoshenko’s and Eringer’s nonlocal elasticity ones. 

Hamilton’s principle is used to derive equations of motion. 

- The modified couple stress theory is used to perform vibration and buckling analysis on FG micro 

beams based on third order shear deformation beam theories. Lagrange’s equations are used to 

obtain the governing equations of motion. 

- Numerical results are carried out to verify the accuracy of the proposed theories. 

 

  

https://www.sciencedirect.com/science/article/pii/S0263822315001956
https://www.sciencedirect.com/science/article/pii/S0263822315001956
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5.1  Introduction 

Application of functionally graded (FG) material in nano and micro structures has been 

an attracted topic in the engineering field. All the stated studies applied the classical 

continuum theory to predict the behaviour of mechanical structures. But many micros 

scaled beams and plates are used in different applications such as in micro electro 

mechanical systems (MEMS) and micro sensors or actuators and it has been observed 

through experimental results that their behaviour are quite size dependent in such scales 

[162, 163]. Classical continuum theory was not capable of capturing this size 

dependency; therefore, many different higher order continuum theories were introduced 

to improve the results obtained for micro systems. These theories predominantly, try to 

improve the model by introducing length scale parameters to capture the so-called size 

effects. 

One of the first higher order continuum theories was strain gradient theory introduced 

by Mindlin and Eshel [164],  this theory had five additional constants beside Lame’ 

constants. Following their lead, Lam et al. [163] presented a modified theory with only 

three non-classical constants starting from the strain energy density function introduced 

by Mindlin and Eshel [164]. Use of the recent theory was more applicable; as Kong et 

al. [165] and Wang et al [166] used the stated theory to investigate the behaviour of 

micro beams considering Euler–Bernoulli and Timoshenko beam theories, respectively. 

In addition, stability analysis of micro beams based on strain gradient theories has been 

recently presented. Papargyri-Beskou et al.[167] and Lazopoulos [168] performed 

bending and buckling analysis of thin strain gradient elastic beams considering surface 

energy. The results showed that the gradient coefficient affects the buckling load 

significantly while the effect of surface energy is negligible. Recently, an analytical 

solution to bending of micro beams with various boundary conditions was presented by 

Akgoz and Civalek [71] 
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Another higher order continuum theory is couple stress theory which was presented by 

Toupin [13], Mindlin and Tiersten [14] and Koiter [15]. One of the good aspects of this 

theory was its need to only two non-classical constants (length scale parameters) in 

addition to two classical constants (Lame’ constants). Even though, there were only two 

constants to obtain, application of this theory was still difficult; therefore, Yang et al.[12] 

modified the couple stress theory to introduce an applicable theory which can capture 

size dependencies considering only one additional constant other than Lame’ constants. 

Park and Gao [17] were one of the first researchers to develop Euler–Bernoulli beam 

theories based on modified couple stress theory. Following from there, Kong et al. [169] 

obtained and analysed size dependent natural frequencies of micro beams. Use of 

modified couple stress theory is not limited to Euler–Bernoulli beam theory; Ma et al. 

[170, 171] developed new size dependent Timoshenko and Reddy–Levinson beam 

theories based on the stated theory and investigated static and dynamic behaviour of such 

micro beams. Fu and Zhang [172] modelled microtubules based on Timoshenko beam 

theory considering modified couple stress theory and analysed micro scale effects on 

buckling of such systems. Akgoz and Civalek [73] studied buckling behaviour of protein 

microtubules based on strain gradient and modified couple stress theories using Euler–

Bernoulli beam model. In another study, they presented buckling analysis of axially 

loaded micro-scaled beams based on the stated theories [69]. Akgöz et al. [173] studied 

vibration response of non-homogenous and non-uniform micro beams and investigated 

in conjunction with Bernoulli–Euler beam and modified couple stress theory. Şimşek 

and Reddy [174] analysed the modified couple stress theory (MCST), a unified higher 

order beam theory which contains various beam theories as special cases is proposed for 

buckling of a  functionally graded (FG) micro beam embedded in elastic Pasternak 

medium.  In light of the modified couple stress theory, Thai et al. [175] investigated Size-

dependent behaviour of functionally graded sandwich micro beams. 

https://scholar.google.com.vn/citations?user=viEL-VAAAAAJ&hl=vi&oi=sra
https://scholar.google.com.vn/citations?user=u9Fp1wIAAAAJ&hl=vi&oi=sra
https://scholar.google.com.vn/citations?user=_h27rX0AAAAJ&hl=vi&oi=sra
https://www.sciencedirect.com/science/article/pii/S0263822314006461
https://scholar.google.com.vn/citations?user=6x96L_YAAAAJ&hl=vi&oi=sra
https://www.sciencedirect.com/science/article/pii/S0263822314006461
https://www.sciencedirect.com/science/article/pii/S0263822314006461
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The understanding of mechanical behaviours of FG nanostructures in a such context is 

essential in the development of structures to meet performance requirements. Potential 

application of FG nano beams in recent years led to the development of the field of 

computational nano mechanics. In practice, the classical continuum theories fail to 

accurately predict the mechanical behaviour of nanostructures due to small dimensions 

of a such structure. To overcome this adverse, Eringen [10, 78] proposed size-dependent 

continuum theory known as the nonlocal elasticity theory. According to this approach, 

the stress at a reference point in an elastic continuum not only depends on the strain at 

the point but also on strains at every point of the body.  

Based on the nonlocal elasticity of Eringen, many researches on static, buckling and 

vibration of isotropic nano beams have been investigated, only some representative 

references are cited. Reddy [176] reformulated local beam theory by using the nonlocal 

differential constitutive relations of Eringen to study bending, vibration, and buckling 

behaviours of nano beams in which an analytical solution has been obtained to bring out 

the effect of the nonlocal behaviour of nano beams. Aydogdu [177] proposed a 

generalized nonlocal beam theory to study bending, buckling, and free vibration of nano 

beams by using the nonlocal constitutive equations of Eringen. Xia et al. [178] used the 

differential quadrature method to study bending, post buckling, and free vibration for 

nonlinear micro beams in which a nonlinear model has been conducted within the 

context of non-classical continuum mechanics by introducing a material length-scale 

parameter. Pradhan and Murmu [179] developed a single nonlocal beam model to 

investigate the bending and vibration characteristics of a nano cantilever beam. Phadikar 

and Pradhan [180] presented finite element formulations for nonlocal elastic Euler–

Bernoulli beam and Kirchhoff plate. Finite element results for bending, vibration, and 

buckling for nonlocal beam with four classical boundary conditions have been computed. 

Thai [181] proposed a nonlocal beam theory for bending, buckling and vibration of 

simply-supported isotropic nano beams using Navier solution. Thai and Vo [182] 

https://scholar.google.com.vn/citations?user=6x96L_YAAAAJ&hl=vi&oi=sra
https://scholar.google.com.vn/citations?user=6x96L_YAAAAJ&hl=vi&oi=sra
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developed a nonlocal sinusoidal shear deformation beam theory for bending, buckling 

and free vibration of simply-supported nano beams. For FG nano-beams, the studies on 

static, buckling and vibration behaviours of FG nano-beams have been considered by 

many authors. Eltaher et al. [183] presented free vibration analysis of functionally graded 

(FG) size-dependent nano beams using finite element method in which the size-

dependent FG nano-beam has been investigated on the basis of the nonlocal continuum 

model. Results from this work showed the significance of the material distribution 

profile, nonlocal effect, and boundary conditions on the dynamic characteristics of nano-

beams. Ebrahimi and Salari [184] analysed thermo-mechanical effects on vibration of 

nonlocal temperature dependent FG nano-beams with various boundary conditions in 

which nonlocal Euler-Bernoulli beam theory has been used. Eltaher et al. [185] presented 

static and buckling responses of FG nano-beams with different boundary conditions 

using finite element method. Ebrahimi and Salari [143] used nonlocal Timoshenko beam 

theory for analysis of thermal buckling and free vibration of FG nano-beams in which 

Navier solution has been applied for analysis of simply-supported FG nano beams.  

In light of Timoshenko’s theory, Simsek and Yurtcu [186] analysed bending and 

buckling of simply supported FG nano-beams using Navier solution. Ebrahimi and 

Barati [144] investigated effects of moisture and temperature on free vibration 

characteristics of simply supported FG nano-beams resting on elastic foundation by 

developing various refined beam theories.  

This chapter has also expanded to FG nano-beams with various boundary conditions by 

Ebrahimi and Barati [187] using differential transform method. A literature review 

shows that the studies on behaviours of FG nano-beams considered effects of transverse 

shear deformation by using nonlocal first-order shear deformation beam theory (FOBT) 

and nonlocal higher-order shear deformation beam theory (HOBT), and most of them 

studied FG simply-supported nano beams using Navier-type solution. Some of 

researches tried to solve FG nano-beams with different boundary condition using finite 
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element method and trigonometric series solution. Moreover, it also reveals that the 

number of researches considered effects of normal strain on behaviours of FG nano-

beams are limited. Tounsi et al. [188] proposed a nonlocal beam theory for analysis of 

stretching effect of isotropic nano beams. Ebrahimi and Barati [189] applied a nonlocal 

strain gradient elasticity theory to wave dispersion behaviour of a size-dependent FG 

nano-beam in thermal environment in which the theory contains two scale parameters 

corresponding to both nonlocal and strain gradient effects and a quasi-3D sinusoidal 

beam theory considering shear and normal deformations is employed. A literature review 

on the behaviour analysis of FG nano-beams shows that most of previous works study 

FG nano beams with the simply-supported boundary conditions, a number of researches 

investigated various boundary conditions are still limited. 

The modified couple stress theory is used to perform a buckling analysis on FG micro 

beams based on third order shear deformation (Reddy) beam theories in thermal 

environment. In addition, the nonlocal elasticity theory is based on Timoshenko’s and 

Eringer’s nonlocal elasticity ones. The beam is assumed to be functionally graded in the 

thickness direction; while Poisson ratio is assumed to be constant, but it is not neglected. 

The principal of minimum potential energy is applied to obtain the governing equations 

and boundary conditions of the FG beam. To analyse different boundary conditions, Ritz 

method is used to solve the governing equations numerically.  

The objectives of this chapter is to propose analysis of FG micro and nano beams with 

various boundary conditions in thermal environments. Numerical results are compared 

to the earlier works and to investigate the effects of material distribution through the 

beam thickness, the span-to-height ratio, the scale length parameter and the boundary 

conditions on the natural frequencies and the thermal buckling of FG micro and nano 

beams. 
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5.2  Geometry of FG beams 

Geometry of beams as in Figure 5.1 with rectangular section b h  and length L . In this 

study, it is made of a mixture of isotropic ceramic and metal whose properties 

continuously in the beam, as follows: 

 
2

( ) ( )
2

p

c m m

z h
P z P P P

h

 
   

 
 (5.1) 

where P(z) is material elastic moduli as Young modulus E(z), Poisson’s ratio ν(z), mass 

density  z , at location z; ,c mP P  are material elastic properties of ceramic and metal, 

p  is power-law material parameter, respectively. 

 

Figure 5.1 Geometry of FG beams (Type A). 

5.3  Theory of FG micro and nano beams  

5.3.1. Kinetic and strain 

The displacement field of Timoshenko beams is given by: 
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where the comma indicates the partial differentiation with respect to the coordinate 

subscript that follows;  0 ,u x t ,  ,x t ,  0 ,w x t  are axial displacement, rotation and 

transverse displacement at the mid-plan of the nano beams, respectively. 
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5.3.2. Equations of motion 

Lagrangian functional is used to derive the equations of motion: 

-U V K    (5.4) 

where U, V and K denote the strain energy, potential and kinetic energy, respectively.  

The variation of strain energy U of system is given by: 

        0 1 0
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V

U dV N M Q dx             (5.5) 

where the stress resultants are defined as: 
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 (5.6) 

where sk is shear correction factor which is supposed to be 5/6.  

The variation of kinetic energy K of system is written by: 
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 (5.7) 

where dot-superscript denotes the differentiation with respect to the time t ;  is the 

mass density of each layer, and 0 1 2, ,I I I are the inertia coefficients defined by:  
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   (5.8) 

Substituting Eqs. (5.5) and (5.7) into Eq. (5.4)  
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 (5.9) 

Leads to the following equations of motion: 
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 (5.10) 

5.3.3. Nonlocal elasticity theory for FG nano beams 

Based on the Eringen’s nonlocal elasticity theory [78], nonlocal constitutive equations 

are expressed by: 

 21 ij ijt     (5.11) 

where   denotes Laplacian operator;  
2

0e a  is parameter of scale length that 

considers the influences of small size on the response of nanostructures with 0e  is a 

constant appropriate to each material, a is an internal characteristics length (e.g., 

latticeparameter, granular distance) and tij  are global stresses. The constitutive equations 

of FG nano beams are hence written under the following expressions: 
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where  
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Substituting Eqs. (5.3) into Eqs. (5.12) and then subsequent results into the stress 

resultants in Eqs. (5.6), the following nonlocal constitutive equations of stress resultants 

are defined as: 
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 (5.13) 

where A, B, D, As are the stiffness’s of FG nano beams which are defined by: 
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Substituting Eqs (5.10) into Eqs (5.13) leads to the expressions of stress resultants as 

follows: 
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 (5.15) 

Substituting Eqs. (5.15) into Eq. (5.4) yields: 
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 (5.16) 

In Eq 5.16, the parameter of scale length (μ) is only included in the components of the 

mass matrix, so studying FG nano beam only for free vibration is appropriate. 

5.3.4. Modified couple stress theory (MCST) 

The displacement field is chosen from previous study HSBT1: 
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where 0 ,u   are the mid-plane axial displacement and rotation, 0w denotes the mid-plane 

transverse displacement of the beam, the comma indicates partial differentiation with 

respect to the coordinate subscript that follows.  

Based on the MCST [12], the rotation about the x-, y-, z- axes are determined by: 
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 (5.17) 

The strain and curvature fields of beams is obtained as: 
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 (5.18) 

The elastic constitutive equations are given by: 
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where 
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 (5.20a) 

If the transverse normal strain effect is omitted  0zz  , the components of ijQ  in Eq. 

(5.19) are reduced as:  
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The couple stress-curvature relation can be introduced as [12]: 
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where 
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with   are respectively the MLSPs in x-directions. 

5.3.5. Variation formulation for MCST 

The strain energy of the FG beams can be stated as: 
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  (5.23) 

where , ,, , , , , , , ,s s s s m m m mA B D B D H A A B D H   are the stiffness of FG beams given 

by: 
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  (5.24) 

The work done V by axial thermal stress is expressed by:  
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The kinetic energy K is obtained as: 
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where the differentiation with respect to the time t is denoted by dot-superscript 

convention;  z is the mass density of the each layer and 0 1 2 1 2 2 1 2, , , , , , ,I I I J J K L L are 

the inertia coefficients, defined by: 
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    (5.28) 

By substituting Eqs (5.23), (5.25) and (5.27) into Eq (5.4), Lagrangian functional is 

explicitly expressed as: 
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 (5.29) 

In Eq 5.29, the parameter of MLSPs ( ) is only included in the components of the 

stiffness matrix, so it is necessary to study the FG micro beam for the various problems 

such as vibration, buckling, static. . . 

5.4  Ritz method (RM) 

5.4.1. Ritz method for nonlocal theory 

Based on the RM, the displacements ( 0u , 0w , θ) are approximated in the following forms: 
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where , ,j j ju w   are unknown values to be determined; 2 1i   ;   is natural frequency; 

 j x and  j x  are the shape functions which are proposed in Table 5.1 for the 

Simply-supported (S – S), the Clamped – Clamped (C – C) and the Clamped – Free (C-

F) boundary conditions (BCs). The shape functions satisfy the BCs given in Table 5.2. 

Table 5.1 Kinematic BCs of nano beams. 

 

 

 

 

 

 

 

 

 

Substituting Eqs. (5.30) into Eq. (5.16), the following characteristic equation is 

obtained:  

 

11 13 11 13 11 13

22 23 2 22 22 23

13 23 33 13 33 13 23 33

n n

n n

T T T T T

n n n

 

           
           

            
                     

K 0 K M 0 M M 0 M u 0

0 K K 0 M 0 0 M M w 0

K K K M 0 M M M M θ 0

(5.31) 

Table 5.2 The shape functions. 

BCs     j x     j x  

S-S cos
j x

L
 sin

j x

L
 

C-F sin
(2j -1) x

2L
 1 cos




(2j -1) x

2L
 

C-C sin
2j x

L
 1 cos




2j x

L
 

 

where the components of stiffness matrix K and mass matrix M are given by:  

BCs Position Value 

S-S x=0 0w   

 x=L 0w   

C-F x=0 ,0, 0, 0, 0xu w w       

 x=L - 

C-C x=0, x=L ,0, 0, 0, 0xu w w      



151 

 

 

11 13 22

, , , , , ,

0 0 0

23 33

, , ,

0 0 0

11 13 22 33

0 1 0 2

0 0 0 0

11

0 ,

, ,

,

, , ,

L L L

s

ij i x j x ij i x j x ij i x j x

L L L

s s

ij i x j ij i x j x i j

L L L L

ij i j ij i j ij i j ij i j

nij i x

K A dx K B dx K A dx

K A dx K D dx A dx

M I dx M I dx M I dx M I dx

M I

     

    

   

 

  

  

   



  

  

   

13

, 1 , ,

0 0

22 23 33

0 , , 0 , 2 , ,

0 0 0

,

, ,

L L

j x nij i x j x

L L L

nij i x j x nij i j x nij i x j x

dx M I dx

M I dx M I dx M I dx

 

     



  

 

  

 (5.32) 

5.4.2. Ritz method for MCST 

By using Ritz method, the displacement field in Eq. (5.29) is approximated by: 
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 (5.33) 

where , ,j j ju w   are unknown values to be determined; 2 1i   ;   is natural frequency; 

 j x  and  j x  are the hybrid functions for Ritz solution reported in Table 4.3 are 

proposed for six typical BCs. They satisfy various BCs: The Simply-Supported (S – S), 

the Clamped – Free (C – F), the Clamped – Clamped (C – C), the Clamped – Simply 

supported (C – S), the Hinged – Hinged (H – H), the Clamped – Hinged (C – H). A 

characteristic problem for vibration and thermal buckling response is obtained through 

the stiffness matrix K and mass matrix M: 
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where 
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5.5  Temperature distribution for MCST 

Two different temperature distributions through the beam depth are considered: Linear 

temperature rise and nonlinear temperature rise. 

 Linear temperature rise: The temperature is linearly increased as follows: 

   
2

2
t b b

z h
T z T T T

h

 
   

 
 (5.36) 

where Tt and Tb are temperatures at the top and bottom surfaces of the beam. 

 Nonlinear temperature rise: The temperature is varied nonlinearly according to a 

sinusoidal law [66] as follows: 
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5.6  Numerical results and discussions 

Example 1: Vibration responses of FSBT and the Eringen’s nonlocal elasticity 

theory for FG nano beam (Type A, the various BCs) 

A number of  FG nano beams are considered in this section to verify the accuracy and 

efficiency of the present theory, and to investigate effects of the material parameter p, 

the span-to-height ratio L/h , the scale parameter   and BCs on the natural frequencies 

of FG nano beams. The FG nano beams are supposed to be made of steel and Alumina 

(Al2O3) whose properties are followed: 210mE GPa , 37800 /m kg m  ,  390cE GPa

, 33960 /c kg m  , 0.3m c   . The FG nano beam geometry is given as follows: 

L=10000 nm, b=1000 nm, h=100 nm. For simplicity, the following nondimensional 

frequency is introduced: 

2 12
ˆ c

c

L

h E


   (5.38) 

The fundamental natural frequencies with respect to the series number N for different 

boundary conditions are given in Table 5.3. It is observed that the responses converge 

quickly for three boundary conditions: p = 1 with L/h=10 and 20 for vibration. Thus, 

these numbers of series terms will be used for vibration analysis, respectively throughout 

the numerical research.  

Table 5.3: Convergence studies for fundamental frequencies of FG nano beams  

(Type A, p=1,  
2

1 nm  ). 

L/h BC 
Numbers of series N 

2 4 6 8 10 12 14 16 

10 

S – S 6.5836     6.5836     6.5836     6.5836     6.5836     6.5836     6.5836     6.5836 

C – F 2.4250     2.4204     2.4196     2.4193     2.4191     2.4190     2.4190 2.4190 

C – C 14.3765    14.2975    14.2763    14.2664    14.2607 14.2569 14.2542 14.2522 

20 

S – S 6.6515 6.6515 6.6515 6.6515 6.6515 6.6515 6.6515 6.6515 

C – F 2.4368     2.4329     2.4323     2.4321     2.4320 2.4320 2.4320 2.4320 

C – C 14.8479    14.7948    14.7845    14.7805    14.7785    14.7772    14.7764 14.7757 

Tables 5.4 – 5.6 figure out the effects of nonlocal parameter and material graduation on 

the frequencies of the simply– supported (S-S), the clamped – free (C-F) and the clamped 

– clamped (C-C) beams, respectively. It is concluded that, as the material graduation 
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increases the frequencies decreased. Also, as the nonlocal parameter increases the 

frequencies decreased, for the both cases. 

Table 5.4 The non-dimensional first natural frequencies with respect to the material 

distribution and the span-to-height ratio of  FG nano beams (Type A, S-S). 

 

Table 5.5 The non-dimensional first natural frequencies with the nonlocal parameter of 

FG nano beams (Type A, C-F, L/h=100, N=10). 

Figure 5.2 illustrates the fundamental frequencies with changing of the non-locality 

parameter, material distribution at L/h=100 and the variation of boundary conditions. It 

can be concluded that, the frequency decreases with high rate where the power exponent 

in range from 0 to 4 than that the power exponent in interval between 4 and 10. The 

  /L h  Theory 
Material parameter p  

0 0.5 1 2 5 10 

 
2

0 nm   

20 FSDT  9.8281     7.7141     6.9670     6.3960     5.9169     5.6520 

 Eltaher et al[183]  9.8797 7.8061 7.0904 6.5244 6.0025 5.7058 

50 FSDT 9.8629     7.7412     6.9916     6.4191     5.9389     5.6730 

 Eltaher et al[183]  9.8724 7.7998 7.0852 6.5189 5.9990 5.7001 

100 FSDT 9.8679     7.7451     6.9952     6.4224     5.9421     5.6760 

 Eltaher et al[183]  9.8700 7.7981 7.0833 6.5182 5.9970 5.7005 

 
2

1 nm   

20 FSDT 9.3831     7.3647     6.6515     6.1065     5.6492     5.3963 

 Eltaher et al[183] 9.4238 7.4458 6.7631 6.2233 5.7256 5.4425 

50 FSDT 9.4106     7.3862     6.6710     6.1248     5.6666     5.4128 

 Eltaher et al[183]  9.4172 7.4403 6.7583 6.2191 5.7218 5.4389 

100 FSDT 9.4146     7.3892     6.6738     6.1274     5.6691     5.4152 

 Eltaher et al[183] 9.4162 7.4396 6.7577 6.2185 5.7212 5.4384 

 
2

2 nm   

20 FSDT 8.9932     7.0587     6.3751     5.8528     5.4146     5.1722 

 Eltaher et al[183] 9.0257 7.1312 6.4774 5.9604 5.4837 5.2126 

50 FSDT 9.0153     7.0759     6.3907     5.8675     5.4285     5.1854 

 Eltaher et al[183] 9.0205 7.1269 6.4737 5.9571 5.4808 5.2098 

100 FSDT 9.0184     7.0783     6.3930     5.8696     5.4305     5.1874 

 Eltaher et al[183] 9.0197 7.1263 6.4731 5.9567 5.4803 5.2094 

  (nm)2 Theory 
Material parameter p   

0 0.5 1 2 5 10 

0 FSDT 3.5161  2.7597 2.4925 2.2885 2.1173 2.0225 

 Eltaher et al [183]  3.5167 2.7600 2.4932 2.2884 2.1168 2.0221 

1 FSDT 3.5153     2.7591 2.4919 2.2879 2.1168 2.0220 

 Eltaher et al [183]  3.5292 2.7693 2.5134 2.2982 2.1268 2.0310 

2 FSDT 3.5145 2.7584 2.4914 2.2874 2.1163 2.0215 

 Eltaher et al [183] 3.5461 2.7841 2.5149 2.3084 2.1360 2.0405 

3 FSDT 3.5137 2.7578 2.4908 2.2869 2.1158 2.0211 

 Eltaher et al [183] 3.5632 2.8019 2.5259 2.3186 2.1458 2.0498 
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frequency decreases as the non-locality parameter increased from 0 to 5.0*10-12 with the 

same rate. 

Table 5.6 The non-dimensional first natural frequencies with the nonlocal parameter of 

FG nano beams (Type A, C-C, L/h=100, N=10). 

Figure 5.3 illustrates the frequency within the different span-to-height ratio (L/h=10, 20, 

50, 100). When the ratio of length and height is 10 then there is a difference than the 

other ratios. The ratio of length and height of 100 is almost identical to that of length and 

height of 50. In this study, we use the ratio L/h = 100 to study for another problem. 

Figure 5.4 illustrates the non-dimensional frequency within the different boundary 

conditions at material at graduation p=1, the non-locality parameter μ=1 (nm)2 and the 

constant span-to-height ratio (L/h=100). In this figure, it indicates that the dimensionless 

frequency will be gradually decreasing from C-C, S-S and C-F. The largest non-

dimensional frequency decreases when the material constant is between 0 and 2. Then, 

the non-dimensional frequency tends to move vertically as the material constant 

increases. 

 

 (nm)2 Theory 
Material parameter p 

0 0.5 1 2 5 10 

0 
FSDT 22.3597    17.5498    15.8506    14.5525    13.4636    12.8607 

Eltaher et al[183] 22.3744 17.5613 15.8612 14.5626 13.4733 12.8698 

1 
FSDT 21.0991    16.5604    14.9570    13.7321    12.7047    12.1358 

Eltaher et al[183] 21.1096 16.5686 14.9645 13.7394 12.7116 12.1423 

2 
FSDT 20.0255    15.7177    14.1958    13.0334    12.0583    11.5183 

Eltaher et al[183]  20.0330 15.7235 14.2013 13.0386 12.0633 11.5230 

3 
FSDT 19.0974    14.9892    13.5379    12.4294    11.4995    10.9845 

Eltaher et al[183]  19.1028 14.9934 13.5419 12.4332 11.5032 10.9880 
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Figure 5.2 The non-dimensional frequency with material graduation 

for different non-locality parameter with the various BCs 
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Figure 5.3 The non-dimensional frequency with material graduation for the various 

slenderness ratio (Type A, C-C,  
2

1 nm  ) 

 

 
Figure 5.4 The non-dimensional frequency with material graduation for the various 

BCs (Type A,  
2

1 nm  ) 
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Example 2: Vibration and the thermal bucking responses of HSBT1 and the MCST 

for FG micro beam (Type A, the various BCs) 

With FG micro beam, several numerical examples are analysed to verify the accuracy of 

present theory and investigate the effects of the power-law index, the span-to-height 

ratio, transverse normal strain, temperature content on the thermal buckling and vibration 

responses of FG micro beams for the various boundary conditions. FG micro beams are 

made of ceramic (Si3N4) and metal (SUS304) with material properties in Table 4.1.  

2 2

2

12
,c

cr m

c

L L
T

h E h


      (5.39) 

where m  is thermal expansion coefficient of metal at T0 (K). Noticing that the following 

relations are used in this paper: T0 = 300(K), Tb - T0 = 5(K). FG micro beams with various 

BCs are considered to evaluate the convergence.  

Table 5.7 Convergence studies for The non-dimensional fundamental frequencies of FG 

micro beams with various BCs and / h  (Type A, p=1, L/h=5, Si3N4/ SUS304) 

BC / h  
Numbers of series N 

4 6 8 10 12 14 

S – S 0 5.7999     5.7903     5.7901     5.7901     5.7901 5.7901 

 1 13.7349    13.7116    13.7110    13.7106 13.7106 13.7106 

C – H 0 5.8948     5.8819     5.8706     5.8634     5.8658 5.8658 

 1 13.9757    13.9694    13.9688    13.9686    13.9686    13.9686 

C – C 0 11.4679    11.3501    11.3150    11.3113    11.3020    11.3020 

 1 29.6718    29.5644    29.5579    29.5575    29.5575 29.5575 

C – S 1 17.1822    17.1749    17.1749    17.1749    17.1749    17.1749 

H – H 1 13.9757    13.9694    13.9688    13.9686    13.9686    13.9686 

C – F 1 7.0661     5.2521     5.0352     5.0255     5.0250     5.0250 

The non-dimensional fundamental frequencies with respect to the series number N are 

given in Table 5.7. The results indicate that N = 10 is the convergence point for natural 

frequency and critical buckling thermal load, respectively. 
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Table 5.8 Fundamental frequency ( ) of   FG micro beams  under LTR  

(Type A, L/h =5, 20, Si3N4/ SUS304, TD). 

BCs L/h   Theory 
ΔT(K)=20  ΔT(K)=80 

p=0.1 0.5 1  p=0.1 0.5 1 

H-H 5 0   HSBTM  8.5461     6.6715     5.8604  8.5127     6.6480     5.8422 
/ 4h   HSBTM 9.7618     7.6202     6.6863  9.7340     7.6036     6.6735 
/ 2h   HSBTM 12.6565     9.8918     8.6639  12.6370     9.8850     8.6632 

h   HSBTM 20.0936    15.7030    13.7186  20.0860    15.6952    13.7027 

20 0   HSBT[190] 8.7846  6.8133 5.9658  8.1742 6.2547 5.4252 
0   HSBTM  8.8938     6.9090     6.0551  8.2961     6.3630     5.5274 

/ 4h   HSBTM 10.0829     7.8466     6.8706  9.5607 7.3732     6.4144 
/ 2h   HSBTM 13.0127 10.1517 8.8776  12.6144     9.7969     8.5385 

h   HSBTM 20.9696 16.3963 14.3217  20.7296    16.1946    14.1358 

C-C 5 0   HSBTM  16.6163 12.9435 11.3294  16.5953 12.9417 11.3241 
/ 4h   HSBTM 19.5454 15.2455 13.3278  19.5343 15.2544 13.3459 
/ 2h   HSBTM 26.1986 20.4659 17.8814  26.1932 20.4860 17.9144 

h   HSBTM 43.4752 34.0009 29.6949  43.3131 33.9156 29.6466 

20 0   HSBT[190] 20.1188  15.6333 13.6920  19.8063 15.3661 13.4427 
0   HSBTM  20.2018 15.6929 13.7410  19.8906 15.4281 13.4944 
/ 4h   HSBTM 22.8674 17.7948 15.5702  22.5962 17.5680 15.3616 
/ 2h   HSBTM 29.4390 22.9653 20.0741  29.2328 22.8038 19.9321 

h   HSBTM 47.2739 36.9628 32.2796  47.1565 36.8971 32.2399 

M: Micro Beam 

The non-dimensional fundamental frequencies of the FG micro beams with the various 

BCs and the span-to-height are given in Tables 5.8–5.9. For macro FG beams ( = 0), 

the present results again agree well with those of HSBT[190]. Some new results for FG 

beams are shown to serve as benchmarks for future studies. The results are increased as 

  increases but the results are decreased as ΔT increases. This response can be expected 

because an increase in the material length scale parameters (MLSPs) leads to an increase 

in the beams’ stiffness. 
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Table 5.9 Fundamental frequency ( ) of  FG micro beams under NLTR  

(Type A, L/h =5 and 20, Si3N4/ SUS304, TD). 

BCs L/h   Theory 
ΔT(K)=20  ΔT(K)=80 

p=0.1 0.5 1  p=0.1 0.5 1 

H-H 5 0   HSBTM  8.5538     6.6746     5.8633  8.5398     6.6606     5.8548 
/ 4h   HSBTM 9.7647     7.6229     6.6889  9.7458     7.6148     6.6850 
/ 2h   HSBTM 12.6587 9.8939 8.6659  12.6461     9.8936     8.6716 

h   HSBTM 20.4317    15.9858    13.9774  20.4286    16.0007    14.0019 

20 0   HSBT[190] 8.7865  6.8184 5.9719  8.1855 6.2841 5.4605 

0   HSBTM  8.9452     6.9585     6.1036  8.5219     6.5803     5.7409 
/ 4h   HSBTM 10.1282     7.8902     6.9134  9.7573 7.5616 6.5992 
/ 2h   HSBTM 13.0478 10.1854     8.9108  12.7640 9.9394     8.6782 

h   HSBTM 20.9914 16.4173 14.3423  20.8210    16.2812    14.2207 

C-C 5 0   HSBTM  16.6153 12.9452 11.3212  16.6068 12.9338 11.3187 
/ 4h   HSBTM 19.5494 15.2484 13.3307  19.5437 15.2420 13.3241 
/ 2h   HSBTM 26.2007 20.4677 17.8832  26.006 20.4516 17.8200 

h   HSBTM 43.3062 33.8716 29.5816  43.2164 33.7187 29.4497 

20 0   HSBT[190] 20.1198  15.6360 13.6953  19.8121 15.3810 13.4604 

0   HSBTM  20.2298 15.7199 13.7675  20.0104 15.5412 13.6047 
/ 4h   HSBTM 22.8922 17.8186 15.5937  22.7001 17.6669 15.4583 
/ 2h   HSBTM 29.4583    22.9838    20.0923  29.3133    22.8802    20.0069 

h   HSBTM 47.2859 36.9743 32.2909  47.2065    36.9444    32.2862 

 M: Micro Beam 

Figures. 5.5 and 5.6 show variation of the natural frequencies and the normalized critical 

temperature ( ) with respect to  ratio of L/h=5 and 20 beams. As  increases, their 

variation depends on BCs. The C – C beam has the biggest variation and the C – F beam 

has the smallest variation. 
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 (a) L/h=5 

 
 (b) L/h=20 

Figure 5.5 Effect of the MLSP on the natural frequencies (ω) of FG micro beams with 

NLT, various BCs (Type A, p=1, Si3N4/SUS304, L/h=5 and 20). 
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(a) L/h=5 

 
(b) L/h=20 

Figure 5.6 Effect of the MLSP on the normalized critical temperature ( ) of FG 

micro beams with NLT, various BCs (Type A, p=1, Si3N4/SUS304, L/h=5 and 20). 
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5.7  Conclusions 

The free vibration analysis of FG nano beams modeled according to Timoshenko beam 

theory is studied. The size-dependent (nonlocal) effect is introduced according to 

Eringen’s nonlocal elasticity model. The vibrational problem governing the axial and 

lateral deformations is derived using the virtual-work principle. Ritz method is used to 

approximate the axial and lateral displacements, respectively. The fundamental 

frequencies of a FG nano beams are investigated versus the nonlocal and material-

distribution parameters for different BCs of FG nano beams. The obtained results show 

that, the material-distribution profile may be manipulated to select a specific design 

frequency. It is also shown that, the nonlocal parameter has a notable effect on the 

fundamental frequencies of FG nano beams.  

The size effect, which is included by the modified couple stress theory, on vibration and 

thermal buckling behaviors of FG micro beams is investigated in this chapter 5. The 

governing equations of motion are derived from Lagrange’s equations. The frequencies, 

critical buckling loads, displacements and stresses of FG micro beams with various BCs 

are obtained. The results indicate that the present study is efficiency for predicting 

behaviors of FG micro beams. 
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Chapter 6 

A finite element model for analysis of FG 

beams 
 

 

 
 

Finite element method (FEM) for vibration and buckling of functionally graded beams based on a 

refined shear deformation theory is present.  

The highlight of this chapter is follows: 

- Governing equations of motion and various boundary conditions are derived from the Hamilton’s 

principle.  

- Effects of power-law index, span-to-height ratio and various boundary conditions on the natural 

frequencies, critical buckling loads of FG beams will be discussant.  

- Numerical results show that the above-mentioned effects play very important role on the vibration 

and buckling analysis of FG beams 
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6.1  Introduction 

In order to avoid the limitations of the analytical approaches, various studies have been 

focused on the development of efficient finite elements. 

Alshorbagy et al.[102] investigated free vibration characteristics of FG beams by using 

a finite element method. The equations of motion are derived using Euler–Bernoulli 

beam theory and the virtual work principle. The material constituents of beams assumed 

to be varying through the thickness or longitudinal directions according to a simple 

power law. The effects of various boundary conditions, power law index, and 

slenderness ratio are investigated. Mohanty et al. [191] carried out a finite element 

analysis to investigate the effect of various parameters on static and dynamic behavior 

of FG beam. It is concluded that the critical buckling load increases with the increase of 

the power law index for FG beam with steel rich bottom whereas this trend reverses for 

aluminum rich bottom. Also, beams having properties according to a power law are more 

stable as compared with beams having properties according to exponential law for the 

case of steel rich bottom. Jing et al. [192] applied a finite volume method for the static 

and free vibration analysis of FG beams using Timoshenko beam theory. It is assumed 

that material properties vary in the thickness direction by power law. Kahya and Turan 

[193]  proposed a new five-nodded beam element for the vibration and buckling analysis 

of FG beams based on the FSDT. Frikha et al. [194] developed a new mixed finite 

element for FG beams based on HSDT of Reddy. The performance of the element is 

checked through static analysis of cantilevered and simply supported beams. 

Chakraborty et al. [103] developed a new beam element to study the thermos elastic 

behavior of FG cantilever beam based on the FSDT. Both exponential and power law 

variations of material property distribution are used to examine different stress 

variations. It has been found that the presence of FGM layer in structures results in a 

significant difference in its response from its parent material beams due to the presence 

of coupled stiffness and inertial parameters. 
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In this chapter, which is extended from the previous work [5], finite element model for 

vibration and buckling of FG beams is studied. The developed theory accounts for 

parabolic variation of the transverse shear strain and stress through the beam depth, and 

satisfy the stress-free boundary conditions on the top and bottom surfaces of the beam. 

Governing equations of motion and boundary conditions are derived from the 

Hamilton’s principle. Effects of power-law index, span-to-height ratio and various 

boundary conditions on the natural frequencies, critical buckling loads and load-

frequency curves of sandwich beams are discussed. Numerical results show that the 

above-mentioned effects play very important role on the vibration and buckling analysis 

of FG beams. 

6.2  Finite element formulation 

6.2.1  FG beams 

Geometry of FG beams as in Figure 6.1 with rectangular section  b h  and length L . In 

this study, it is made of a mixture of isotropic ceramic and metal whose properties vary 

continuously in the beam, i.e., Young modulus E , Poisson’s ratio  , mass density 

vary exponentially in both axial (x – axis) and the thickness directions (z – axis) as 

follows: 

 
2

( ) ( )
2

p

c m m

z h
P z P P P

h

 
   

 
      (6.1) 

where P(z ) is material elastic moduli as Young modulus  E z , Poisson’s ratio  z , 

mass density  z , at location z; Pc, Pm are material elastic properties of ceramic and 

metal, respectively;  p is power-law material parameter. 

 

Figure 6.1 Geometry of FG beam 
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6.2.2  Higher-order shear deformation beam theory 

The displacement field of the present theory can be obtained as (HSBT1): 
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(6.2) 

where 0u , θ are the mid-plane axial displacement and rotation, 0w  denotes the mid-plane 

transverse displacement of the beam, the comma indicates partial differentiation with 

respect to the coordinate subscript that follows. 

The nonzero strains associated with the displacement field are: 
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 (6.3) 

 where 0 1 2, ,and   are the axial strain and curvatures of the beam, respectively. 

6.2.3  Constitutive Equations 

 The strains and stresses are related by: 
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6.2.4  Variational Formulation 

In order to derive the equations of motion, Hamilton’s principle is used: 
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where , andU V K   denote the virtual variation of the strain energy, kinetic energy and 

potential energy, respectively. The variation of the strain energy can be stated as: 
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where dA dxdy  và N , M , M , Qb s

x x x xz  are the stress resultants, defined as: 
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By using Eqs. (6.3), (6.4) and (6.7), the constitutive equations for stress resultants and 

strains are obtained: 
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where s s s sA, B, D, B , D , H andA are the stiffness’s of FG beams and given by: 
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The variation of the potential energy by the axial force 0

xx
N  can be written as: 

0

0, 0,0

L

xx x x
V N w w bdx    (6.10) 

The variation of the kinetic energy can be expressed as: 
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where dot-superscript prime indicates the differentiation with respect to the time t; and  

0 1 2 1 2 2, , , , ,I I I J J K are the mass inertias, defined by: 
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By substituting Eqs. (6.6), (6.10) and (6.11) into Eq. (6.5), the following weak statement 

is obtained: 
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6.2.5  Governing Equations of Motion  

The equilibrium equations of the present study can be obtained by integrating the 

derivatives of the varied quantities by parts and collecting the coefficients of u , w  

and  : 
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By substituting Eq. (6.8) into Eq. (6.14), the explicit form of the governing equations of 

motion can be expressed with respect to the stiffness’s 
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6.2.6  Finite Element Formulation 

The present theory for FG beams described in the previous chapter was implemented via 

a displacement based finite element method. The variational statement in Eq. (6.13) 

requires that the axial displacement u  and rotation   are only once differentiable and 
0C - continuous, whereas the transverse displacement w  must be twice differentiable and 
1C -continuous. The field variables are therefore approximated as follows: 
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In order to satisfy the continuity of 
0C of the axial displacement and rotation, Lagrange’s  

shape functions are hence chosen, which are given as in Eq. (6.17) and plotted in Figure 

6.2.  
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Figure 6.2 Two-nodes beam element 

Moreover, in order to satisfy the 
1C -continuity condition of the transverse displacement, 

a second-order polynomial can be selected for the shape function, however it requires a  

three-node finite element with 3 values of associated node displacement. In practice, this 

approach is complicated to implement and programming. Moreover, it is observed that 

the essential variables of the beams [28] are 
,, , ,xu w w  , that enables to use a two-node 

finite element and a Hermite-cubic interpolation function. 

The transverse displacement of the beams is therefore approximated as follows: 
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where the shape functions  e

j x  are given by: 
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The variations of these shape functions are also displayed in Figure 6.3 in which it is 

observed that the shape functions satisfy the delta knoneckor condition. 
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Figure 6.3 Hermite shape functions in a beam element 

Substituting these expressions in Eq. (6.17) and Eq. (6.19)  into the corresponding weak 

statement in Eq. (6.13), the finite element model of a typical element can be expressed 

as the standard eigenvalue problem: 

 0 2

xx
N   K G M χ 0  (6.20) 

Eqs. (6.20) are equations of motion of the beam from which the bending, buckling and 

vibration responses of the beam can be obtained. The solution of Eq. (6.20) will allow 

to calculate the critical thermal buckling loads of FG beam. 

 0

xx
N K G χ 0   

or the natural frequencies of FG beam. 

 2 K M χ 0   

where K, G and M are the element stiffness matrix, element geometric stiffness matrix 

and element mass matrix, respectively. The explicit forms of them are given by: 
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In Eq. (6.20), 
0

xx
N is the axial force or the thermal force,   is the natural frequency, χ  is 

the eigenvector of nodal displacements corresponding to an eigenvalue: 

 
T

u w χ  (6.22) 

6.3  Numerical results and discussions 

Example: Vibration and the thermal bucking responses of HSBT1 using FEM for 

analysis FG beam (Type A, various BCs) 

For verification purpose, the fundamental natural frequencies and critical buckling loads 

of FG beams with different values of the span-to-height ratio for the three boundary 

conditions, which are the Clamped – Clamped (C – C), the Clamped – Free (C – F) and 

the Simply – supported (S – S) are given in Tables 1-4 FG material properties are 

assumed to be: 

For simplicity, the non-dimensional natural frequencies and the critical buckling loads 

are defined as: 
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Table 6.1 Ceramic and metal materials. 

Materials  E  (GPa)   (kg/m3)   

Ceramic 

Alumina (Al2O3)  380 3960 0.3 

Metal 
Aluminum (Al)   70 2702 0.3 

Therefore, this number of elements is used throughout the numerical examples. The 

results obtained from the present theory are compared with those of HSBT [5] and [117]. 

In order to verify the convergence of the present polynomial series solution, Table 6.2 

presents the fundamental frequency and critical buckling loads for three boundary 

conditions of FG beams. The solutions are calculated for the power-law index (p=1) and 

span-to-height ratio (L/h=5). The solutions of S-S and C-F boundary conditions converge 

more quickly than C-C one. The results indicate that Ne = 8 is the convergence point for 

natural frequency, and critical buckling load, respectively. Thus, this number is used 

hereafter. It can be stated that the convergence of present solution appears to be faster 

than that of the solution from [5] (m = 12). 

Tables 6.3-6.4 present the comparison of the natural frequencies and critical buckling 

loads of FG beams (Type A) with three boundary conditions. They are calculated for 

various values of the power-law index and compared to the solutions obtained from the 

third-order shear deformation beam theory (TSBT) ([5], [117]). It is seen that the 

solutions obtained derived from the proposed theory are in excellent agreement with 

those obtained from previous results for both deep and thin beams. 

Figures 6.4-6.5 display the variation of the fundamental frequency and critical buckling 

load with respect to the power-law index and the span-to-height ratio of FG beams. Three 

curves are observed for three boundary conditions, the highest curve corresponds to the 
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C-C case and the lowest one is the C-F case. The results decrease with an increase of the 

power-law index. 

Table 6.2: Convergence of the non-dimensional fundamental frequency( ) and the 

critical buckling load  crN  of FG beams (Type A, p = 1 and L/h = 5) 

BCs Theory 
Number of elements Ne 

6 8 10 12 14 16 18 

Fundamental frequency    

S-S HSBTF  3.9711     3.9711     3.9711     3.9711     3.9711     3.9711     3.9711 

 HSBT [5]  3.9907  3.9904 3.9904 3.9904 3.9904 3.9904 3.9904 

C-F HSBTF 1.4633     1.4633     1.4633     1.4633     1.4633     1.4633     1.4633 

 HSBT [5] 1.4645  1.4638 1.4635 1.4633 1.4633 1.4633 1.4633 

C-C HSBTF 7.9501    7.9501     7.9501     7.9501     7.9501     7.9501     7.9501 

 HSBT [5] 8.0309  8.0031 7.9704 7.9572 7.9518 7.9500 7.9493 

Critical buckling load  crN  

S-S HSBTF 24.5841    24.5841    24.5841    24.5841    24.5841    24.5841    24.5841 

 HSBT [5] 24.5873  24.5840 24.5840 24.5840 24.5840 24.5840 24.5840 

C-F HSBTF 6.5352     6.5352     6.5352     6.5352     6.5352     6.5352     6.5352 

 HSBT [5] 6.5352  6.5352 6.5352 6.5352 6.5352 6.5352 6.5352 

C-C HSBTF 79.4884    79.4884    79.4884    79.4884    79.4884    79.4884    79.4884 

 HSBT [5] 81.3950  79.4992 79.4888 79.4888 79.4888 79.4888 79.4888 
F: Finite element method 

 

Table 6.3 Comparison of the non-dimensional critical buckling load of FG beams with 

various boundary conditions (Type A, L/h=5 and 10). 

L/h BCs Reference  
p 

0 0.5 1 2 5 10 

5 S-S HSBT [5] 48.8406  32.0013 24.6894 19.1577 15.7355 14.1448 

  HSBTF 48.5960    31.8593    24.5841    19.0710    15.6425    14.0509 

 C-C HSBT [5] 154.5610  103.7167 80.5940 61.7666 47.7174 41.7885 

  HSBTF 152.1513   102.2467    79.4884    60.8802    46.8791    40.9865 

 C-F HSBT [5] 13.0771  8.5000 6.5427 5.0977 4.2772 3.8820 

  HSBTF 13.0595     8.4900     6.5352     5.0916     4.2703       3.8748 

10 S-S HSBT [5] 52.3083  34.0002 26.1707 20.3909 17.1091 15.5278 

  HSBTF 52.2378    33.9600    26.1412    20.3665    17.0816    15.4995 

 C-C HSBT [5] 195.3623  128.0053 98.7885 76.6538 62.9580 56.5926 

  HSBTF 194.3840   127.4390    98.3400    76.2881    62.5728   56.2052 

 C-F HSBT [5] 13.3741  8.6694 6.6678 5.2025 4.3974 4.0045 

  HSBTF 13.3091     8.6324     6.6405     5.1796     4.3711     3.9775 
F: Finite element method 
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Figure 6.4 Effects of  p and L/h on the nondimensional fundamental 

frequency    of  FG beams (Type A) 

 

 
Figure 6.5 Effects of p and L/h on the critical buckling load  crN  of 

FG beams (Type A) 
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Table 6.4 Comparison of the non-dimensional fundamental natural frequency of FG 

beams with the various boundary conditions (Type A, L/h=5 and 20). 

L/h BCs Reference  
p 

0 0.5 1 2 5 10 

5 S-S HSBT [117] 5.1527  4.4107 3.9904 3.6264 3.4012 3.2816 

HSBT [5] 5.1528  4.4102 3.9904 3.6264 3.4009 3.2815 

HSBTF 5.1528 4.4011 3.9711 3.5972 3.3736 3.2650 

C-C HSBT [117] 10.0699  8.7463 7.9499 7.1766 6.4940 6.1652 

HSBT [5] 10.0726  8.7463 7.9518 7.1776 6.4929 6.1658 

HSBTF 10.0698     8.7439     7.9501     7.1768     6.4932     6.1654 

C-F HSBT [117] 1.8952  1.6182 1.4633 1.3325 1.2592 1.2183 

HSBT [5] 1.8957  1.6182 1.4636 1.3328 1.2594 1.2187 

HSBTF 1.8952     1.6178     1.4633     1.3326     1.2592     1.2184 

20 S-S HSBT [117] 5.4603  4.6516 4.2050 3.8361 3.6485 3.5390 

HSBT [5] 5.4603  4.6506 4.2051 3.8361 3.6485 3.5390 

HSBTF 5.4603     4.6500     4.2037     3.8341     3.6465     3.5378 

C-C HSBT [117] 12.2238  10.4287 9.4316 8.5975 8.1448 7.8859 

HSBT [5] 12.2243  10.4269 9.4319 8.5977 8.1446 7.8860 

HSBTF 12.2228    10.4260     9.4313     8.5973     8.1441     7.8851 

C-F HSBT [117] 1.9495  1.6605 1.5011 1.3696 1.3033 1.2645 

HSBT [5] 1.9496  1.6602 1.5011 1.3696 1.3034 1.2646 

HSBTF 1.9496     1.6601     1.5010     1.3696     1.3033     1.2645 
F: Finite element method 

6.4  Conclusions 

Based on refined shear deformation theory, the nondimensional fundamental frequency  

  and the critical buckling load  crN of FG beams (Type A) is presented. Governing 

equations of motion and various boundary conditions are derived from the Hamilton’s 

principle. Finite element model is developed to determine the natural frequencies, critical 

buckling loads. Effects of the power-law index (p), the span-to-height ratio (L/h), and 

various boundary conditions are discussed. The present model can provide accurate and 

reliable results in analyzing the nondimensional fundamental frequency   and the 

critical buckling load  crN  problem of FG beams. 
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Chapter 7 

Conclusions and Recommendations 
 

7.1  Conclusions 

In this dissertation, the author has proposed some beam models for static, buckling and 

vibration analysis of functionally graded isotropic and sandwich beams embedded in 

hygro-thermo-mechanical environments. 

The main conclusions of the thesis can be summarized as follows 

 The dissertation has introduced a brief literature review on computational theories 

and methods of composite beams, from which several novel findings were found and 

proposed. 

 It presented more details of the composite materials, its microstructure and method 

of estimating the effective elastic properties. A literature reviews also focused on the 

topics that are relevant to this research, such as beam theories, analytical and 

numerical approaches for bending, buckling and vibration analysis of beams in 

Hygro-thermo-mechanical environment. 

 The thesis proposed a novel general higher-order shear deformation beam theory for 

analysis of functionally graded beams. A general theoretical formulation of higher-

order shear deformation beam theory is derived from the fundamental of two-

dimensional elasticity theory and then novel different higher-order shear 

deformation beam theories are obtained. Moreover, two other beam models are also 

proposed. A HSBT model with a new inverse hyperbolic-sine higher-order shear 

function and a novel three-variable quasi-3D shear deformation beam theory for 

analysis of functionally graded beams are proposed.  

 It investigated effects of moisture and temperature rises on vibration and buckling 

responses of functionally graded beams. The present work was based on a higher-

order shear deformation theory which accounts for a hyperbolic distribution of both 

in-plane and out-of-plane displacements. The temperature and moisture are 

supposed to be varied uniformly, linearly and non-linearly. 

 The effects of scale-size on the buckling and vibration behaviors of functionally 

graded beams is proposed in thermal environments. A general theoretical 
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formulation is derived from the fundamental of two-dimensional elasticity theory. 

The effects of boundary conditions on the behaviors of functionally graded beam are 

considered. 

 A finite element model for vibration and buckling of functionally graded beams 

based on a refined shear deformation theory is presented. Governing equations of 

motion and boundary conditions are derived from the Hamilton’s principle. Effects 

of the power-law index, the span-to-height ratio and various boundary conditions on 

the natural frequencies, critical buckling loads of functionally graded beams are 

discussed.  

Some remaining limitations of the thesis are as follows: 

 Behavior analysis of nano FG beams can not use the higher-order shear deformation 

theory. 

 Using the ritz method, the accuracy depends on the approximation function. 

 Research results for the problem A novel three-variable quasi-3D shear deformation 

theory has not been as expected. 

7.2  Recommendations 

During the research process, the thesis also encountered certain difficulties and 

limitations as above. Therefore, some problems exist in the thesis which will be 

developed in the near future: 

 Analysis of FGM beam behavior with different numerical methods should also be 

considered soon. 

 Develop two-dimensional elasticity solution for vibration analysis of composite 

beams with various boundary conditions. 

 Develop FGM beam models with more complex geometry. 

 Develop and analyze behavior behaviours of thin-walled FG beam and FG sandwich 

beams. 
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